background image

GEOLOGICA CARPATHICA, JUNE 2007, 58, 3, 237—262

Biostratigraphy and paleoenvironmental changes on the

transition from the Menilite to Krosno lithofacies

(Western Carpathians, Czech Republic)







Czech Geological Survey, Klárov 131/3, 118 21 Praha, Czech Republic;


Czech Geological Survey, Leitnerova 22, 602 00 Brno, Czech Republic;;

(Manuscript received February 23, 2006; accepted in revised form December 7, 2006)

Abstract: Study of microfossils and calcareous nannofossils confirmed the diachronous onset of the Krosno lithofacies.
In the Fore-Magura Unit the Reticulofenestra ornata bloom correlated with NP24 Zone (lower Upper Oligocene) was
recognized within this facies while in the Ždánice-Subsilesian Unit in the underlying Menilite lithofacies. Onset of the
Krosno lithofacies in the external Pouzdřany Unit is attributed to the Lower Miocene, NN3 Zone. The Zagórz Limestone
intercalations were found as an important biostratigraphic horizon for the lower part of the Krosno lithofacies in the
Ždánice-Subsilesian Unit and is attributed to NP25 Zone. Microplankton blooms (Limacina sp., bivalve juveniles,
clavate planktonic foraminifers Beella and Bolliella, radiolarians, prasinophyte cysts, planktonic diatoms) and calcare-
ous nannoplankton blooms (Cyclicargolithus spp., R. ornata) or abundances of some taxa (Pontosphaera spp.,
Reticulofenestra minuta, Syracosphaera sp.) are characteristic of the upper Menilite and lower Krosno lithofacies and
reflect rearrangement of Carpathian orogenic zone, isolation of foreland basins and development of “Protoparatethys”.

Key words: Oligocene, Lower Miocene, Outer Flysch Carpathians, biostratigraphy, paleoenvironment, plankton
blooms, foraminifers, calcareous nannofossil.


The Krosno lithofacies represents the youngest synorogenic
turbiditic sediments gradually terminating the last deposi-
tional episode in the flysch basins of the Western Car-
pathians. Its development responded to the integrated effects
of the Neoalpine orogenic movements and eustatic changes
in the Oligocene. The aim of this study is to give the bio-
stratigraphic data around the onset of the Krosno lithofacies
in tectonic units of the Outer (Menilite-Krosno) Group of
Nappes in the territory of the Czech Republic. Moreover, the
relation between the Krosno lithofacies deposition and the
underlying Menilite Formation was studied from the bios-
tratigraphic and paleoenvironmental points of view.

Geological setting

The study area is a part of the Outer Flysch Carpathians

– Neoalpine structure in the foreland of Paleoalpine Car-
pathian Centralides. The Krosno lithofacies is widespread
through the Outer Group of Nappes called also the Meni-
lite-Krosno Group and it is missing in the Inner (Magura)
Group of Nappes except its eastern extension in Poland
(Świdziński 1961) and Slovak Republic (Potfaj 1983)
where the deposition persisted for a longer time.

The Krosno lithofacies, besides the succession of re-

gional “Menilite” facies in the Oligocene, is a characteris-
tic feature of the group of nappes in the Flysch
Carpathians. The onset of the Krosno lithofacies was trig-

gered by the beginning of tectonic movements that rebuilt
the deep-sea basins with predominantly pelagic sedimen-
tation to much shallower relic molasse basins. The Krosno
lithofacies itself can be regarded as an accumulation of
turbidites controlled by the Neoalpine orogenetic activity
(Picha et al. 2006). The typical development of this litho-
facies is light grey mostly calcareous mudstone and clay
interbedded with fine-grained sandstone with calcareous
cement and clastic garnets.

The  Krosno lithofacies overlay the Menilite Formation,

which can be characterized as a succession of several region-
al facies reflecting the isolation of basins (Krhovský et al.
1992). The basal Sub-Chert Member of Menilite Formation
consists of bioturbated light marls interbedded with dark
laminated shales and documents stepwise isolation of the
depositional area from the World Ocean. Higher, the Chert
Member usually in facies of “Menilite” cherts and non-cal-
careous siliceous shales, represents period of widespread an-
oxia, water stratification, freshwater surface waters and high
biosiliceous productivity. Above, the blooms of nannofossil
Reticulofenestra ornata formed the Dynów Marlstone – a
horizon of bioturbated nannofossil marlstones that were ac-
cumulated under similar settings to the underlying cherts but
with slightly increased surface salinity.

The terminal member of the Menilite Formation is the Šit-

bořice Member that reflects the restoration of normal marine
conditions in the surface waters but anoxia still persisted al-
ternating with oxic episodes (Krhovský et al. 1992). Typi-
cally brown-grey laminated shales and marls interbedded
with grey bioturbated shales prevail in lithology.

background image



The onset of the Krosno lithofacies is usually a gradual

transition with increased frequency of turbidites of typical
lithology mentioned above. The maximum thickness of
the  Krosno lithofacies attains up to 1250 m at the Moravi-
an territory according to the deep boreholes. In the Polish
Outer Carpathians it may exceed 3000 m (Bak 2005).

The Krosno lithofacies has several local lithostratigraphic

names along the Carpathian arc: the Křepice Formation in
the Pouzdřany Unit, Ždánice-Hustopeče Formation in the
Ždánice-Subsilesian Unit, and Krosno Formation in the
Silesian and Fore-Magura Units (Fig. 1).

Previous studies

The diachronous onset of the Krosno lithofacies in the

Western Carpathians was described by Koszarski & Źytko
(1959, 1961), Jucha (1969), and Haczewski (1981, 1984)
based on the occurrence of the Jaslo Limestone marker ho-
rizon in the different lithostratigraphic units (Menilite,
Krosno, and Malcov Formations) from the Polish Flysch
Carpathians. In the territory of the Czech Republic only
incomplete information exists about the age of the Krosno
lithofacies (Krhovský et al. 1995; Bubík & Švábenická
2000; Stráník & Švábenická 2004). The biostratigraphy of
the Krosno lithofacies was studied mainly by microfossils
and calcareous nannofossils (Molčíková & Stráník 1987;

Stráník 2004; Švábenická & Stráník 2005; Švábenická et
al. 2005). The position and stratigraphic validity of the
Zagórz Limestone in the Krosno lithofacies has already
been mentioned by Bubík & Švábenická (2000).


The Stavěšice, Boleradice, Dolní Věstonice, and

Chomýž sections were newly documented. The rock and
fossil material is stored at the Czech Geological Survey.
Archive rock material from the boreholes Křepice-5 and
Slavkov-3, and test trenches Němčičky and Dolní Věs-
tonice stored in the Czech Geological Survey, Brno was
exploited for nannofossil study. The original microfossil
slides from the same storage were available for the revi-
sion of foraminifers and other microfossils: diatoms, prasi-
nophytes, radiolarians, pteropods, fish and shark remains,
etc. For the location of all these sections see Fig. 1.


Samples disintegrated in solution of sodium bicarbon-

ate were washed to obtain microfossils using sieves of
mesh size 0.063 mm. The microfossils were manually
picked under binocular microscope. Semiquantitative data

Fig. 1. Krosno lithofacies in the Outer (Menilite-Krosno) Group of Nappes, Outer Western Carpathians in the territory of the Czech Republic.
Localities: 1 – Pouzdřany, 2 – Křepice-5, 3 – Boleradice, 4 – Němčičky, 5 – Slavkov-3, 6 – Stavěšice, 7 – Litenčice, 8 – Chomýž.

background image



for microfossils are usually based on picks of 300 speci-
mens at least. The counts were done separately for plank-
tonic foraminiferal assemblage and benthic foraminiferal
assemblage as separate sets from the same sample. Other
microfossils were then counted from total taphocoenose
(together with foraminifers). Smaller microfossil picks
from poor samples were not counted and only a presence
of microfossils was recorded.

Smear slides for calcareous nannofossils were prepared

using a decantation method. The 3—30 µm fraction was sep-
arated in the following way: the heavy-fraction was allowed
to settle for 3 minutes in a 45 mm water column and re-
moved, the fine-fraction was saved for slide preparation af-
ter 45 minutes. Examination of the nannofossils was carried
out using an oil-immersion-objective Nikon light-micro-
scope at 1000   magnification.

Biostratigraphic data were correlated with planktonic for-

aminiferal zones by Berggren et al. (1995) and nannoplank-
ton standard NP and NN zones by Martini (1971) and NNT
zones by Varol (1998). Central Paratethys regional stages
and their comparison with nannoplankton NP and NN
zones (Table 1) and biostratigraphic evaluation of plank-
tonic foraminifers are done sensu Cicha et al. (1998).


Křepice-5 Borehole

The borehole was drilled in 1981 and penetrated the

Ždánice-Hustopeče Formation, reached the top of the Šit-
bořice Member at 25.4 m, and the top of the Dynów Marl-
stone at 95.15 m, both of the Menilite Formation (Stráník
et al. 1981a; Jurášová 1987), Fig. 2.

The microfossil oryctocoenoses are composed of plank-

tonic and benthic foraminifers (Fig. 3), abundant fish rem-
nants (teeth, bones, scales), rare radiolarians, sponge
spicules, juvenile bivalves, pteropods, diatoms, prasino-
phytes (Figs. 4, 5), etc. Benthic foraminifers are predomi-
nantly calcareous, mainly buliminids (Table 2). Some
assemblages are dominated by agglutinated taxa (ammo-
discids). Otherwise, agglutinated taxa represent a minor
part of the highly diverse mixed assemblages. This fauna
comprises  Glomospira gibbosa, G. charoides, Ammodiscus
sp.,  Bathysiphon? sp., Haplophragmoides  spp.,  Trocham-
mina  spp.,  Recurvoidella  sp. The lower part of the Šit-
bořice Member and the interval just below the onset of the
Krosno lithofacies are characterized by frequent reworked
planktonic foraminifers from the Middle—Upper Eocene
(mostly  Subbotina spp.) and less often the older taxa. The
lowermost part of the Ždánice-Hustopeče Formation does
not show any faunal turnover. It is a rather step-wise de-
crease in diversity with more frequent levels barren of fora-
minifers upwards.

Calcareous clays of the upper part of the Šitbořice Mem-

ber were rich in moderately preserved nannofossils of very
low diversity (Table 3). The  assemblages are characterized
by alternations of abundances of genus Pontosphaera
(Fig. 6.21—36),  or  Cyclicargolithus  spp., Dictyococcites
bisectus, Reticulofenestra lockeri, R. minuta, and Syra-
cosphaera sp.  Specimens reworked from the older strata
either occurred in very low numbers or were not encoun-
tered. Bloom Reticulofenestra ornata (Fig. 7.19—24) was
recorded in the uppermost part of the formation. It is inter-
rupted by a short interval of higher diversity where R. or-
nata disappears and Helicosphaera obliqua (Fig. 6.7—10)
occurs for the first time.

The Krosno lithofacies yields poor and poorly preserved

nannofossils. Rare specimens of Helicosphaera recta ac-
companied by Cyclicargolithus  spp.,  Pontosphaera multi-
pora, abundant Reticulofenestra minuta, and other species
were found in the lowermost part of the section exclusive-
ly (see Table 3). The overlying sediments contain scarce
autochthonous species complemented by more frequent
reworked nannofossils. Some levels provided either poor
reworked specimens exclusively or were barren of nanno-

Biostratigraphy:  The first occurrence of Helicosphaera

obliqua at 29.2—29.4 m proves the NP24 Zone (Aubry
1990). The base of the zone may, anyhow, be lower con-
sidering  H. recta reported by Stráník et al. (1981a) from
64.0 m depth. At 28.9—29.0 m the significant planktonic
foraminifer  Paragloborotalia opima rarely occurs for the
first time and formally delimits the base of the P. opima

Table 1: Correlation of Oligocene and Early Miocene with Cen-
tral Paratethys stages by Cicha et al. (1998), modified. The infor-
mal substages of the Kiscellian after Báldi (1980) and Egerian by
Báldi & Seneš (1978). M.M. – Middle Miocene, * – (partim).

background image



Fig. 2. Log of the Křepice-5 Borehole. 1 – brownish marlstone; 2 – brown grey non-calcareous shale; 3 – fine-grained sandstone; 4 – black
grey laminated chert; 5 – greenish non-calcareous and brown calcareous shales; 6 – brown limestone; 7 – light grey, calcareous, light grey
sideritic dolomite; 8 – grey marly shale; 9 – dip of beds; 10 – first occurrence of fossil; 11 – interval with occurrence; 12 – interval with
acme; 13 – horizon with acme; 14 – nannofossils (Cp – Coccolithus pelagicus, Cy – Cyclicargolithus spp.   Continued on the next page.

background image



Fig. 2 continued from the previous page.  Cf – Cyclicargolithus floridanus, Db – Dictyococcites bisectus, Pll – Pontosphaera latellipti-
ca, P. latoculata, S – Syracosphaera sp., Rm – Reticulofenestra minuta, Ro – Reticulofenestra ornata); 15 – prasinophytes; 16 – di-
atoms;  17 – charophytes; 18 – clavate planktonic foraminifers (Beella, Bolliella);  19 – radiolarians; 20  – micromolluscs (pteropods,
juvenile bivalves); 21 – sponge spicules. * – after Stráník et al. (1981).

background image



Zone. The surface sample collected from deluvium at the
well site revealed Helicosphaera ampliaperta indicating
NN2—NN4  zone interval, Lower Miocene.

Paleoecology and paleoenvironment: The foraminifer-

al taphocoenoses indicate fluctuations of paleoenviron-
ment through the section from oxic to dysoxic and fully

Fig. 3. Significant planktonic foraminifers near the Krosno lithofacies onset. 1, 2 – Bolliella navazuelensis, Křepice-5, 24.15—24.5 m.
3—6 – Beella rohiensis, Křepice-5; 3,4 – 24.15—24.5 m; 5,6 – 43.8—44.1 m. 7, 8 – Paragloborotalia semivera, Slavkov-3,
257.5—258.5 m.  9, 10 – Paragloborotalia opima; 9 – Boleradice, sample 69/05; 10 – Křepice-5, 28.6—29.0 m. Length of bar:
100 µm except 2C – 25 µm.

anoxic (benthic free). The benthic foraminiferal assem-
blages contain frequent to abundant taxa adapted well to
hypoxic conditions: Fursenkoina, Virgulinella, Bolivina,
Caucasina, Chilostomella, 

Allomorphina, Nonionella

(SenGupta & Machain-Castillo 1993) and also to fluctuat-
ing salinity (Protelphidium). At the upper part of the Šit-

background image



Fig. 5.  Pterospermella spp. (Prasinophyta).  1 – specimen with 3D
preservation filled by pyrite. 2 – compressed specimen, Křepice-5;
1 – 14.6—15.2 m; 2 – 15.8—16.2 m. Krosno lithofacies. Length of
bar = 0.1 mm.

Fig. 4. Prasinophytes and diatoms preserved as pyrite casts. 1, 2 – leiospheres (Prasinophyta): 1 – cast
of the specimen with ruptured cuticle, Křepice-5, 15.8—16.2 m. 3—6 – Odontella sp., Křepice-5,
43.8—44.1 m.  7—11 – Triceratium spp., Křepice-5; 7 – 15.8—16.2 m; 8—11 – 15.8—16.2 m.
12—13 – Arachnodiscus indicus, Křepice-5, 15.8—16.2 m. 14—16 – “Coscinodiscus” spp., Křepice-5,
15.8—16.2 m. Length of bar 0.5 mm.

bořice Member (at about 38 m) the diversity of benthic
foraminifers decreases. At the same level pyrite cores of
Limacina and juvenile bivalves nearly disappear.

In the upper part of the studied section (32.0 to 23.6 m)

unusual occurrences and blooms of microplankton were en-
countered. They are grouped into two intervals with the
same succession:

1. prasinophytes + clavate planktonic foraminifers (Beel-

la, Bolliella);

2. prasinophytes + diatoms (Odontella? sp., “Coscino-

discus” spp., Triceratium spp., Arachnodiscus indicus);

3. prasinophytes + radiolarians.

These intervals contain oli-

go-specific nannofossil assem-
blages and are separated by an
interval with Reticulofenestra
ornata bloom that is probably
evidence of very low salinity
and/or high nutrient levels
(Krhovský et al. 1992). R. or-
nata blooms were reported by
Stráník et al. (1981a) also from
63.5—64.0 m and 74.2—74.6 m
of the Křepice-5.

Slavkov-3 Borehole

The borehole was drilled in

1965 as a fully cored reference
section for intepretation of
seismics. It penetrated clayey
facies of the Ždánice-Hus-
topeče Formation and at
234.4 m reached the top of a

sequence that may be either the reduced (hypoxic) facies
of the same formation or the Šitbořice Member of the Me-
nilite Formation (Fig. 8). Below, at 282.8 m a fault was en-
countered, with Eocene greenish clays below.

The microfossil taphocoenoses consist of planktonic

and benthic foraminifers, frequent fish bit, sponge spi-
cules, diatoms, radiolarians and limonite casts of narrow
burrowings (Trichichnus?), Table 4. Burrowing casts are
abundant below 193 m, siliceous microfossils (sponges,
diatoms, radiolarians) occur frequently higher. Reworked
foraminifers from Upper Cretaceous and older Paleogene
strata were encountered at different depths of the section.
Highest diversity of reworked forms occurred at 203—
205 m:  Gyroidinoides nitidus, Globotruncanella peta-
loidea, Pseudohastigerina micra, Acarinina soldadoensis,
A. broedermanni, Morozovella trichotrocha, M. aequa.

The nannofossil assemblages below 234.4 m are abundant

but of low diversity. High numbers of Cyclicargolithus flori-
danus and Cyclicargolithus floridanus-abisectus and/or Reti-
culofenestra minuta are typical for these strata (Table 5).
Presence of Helicosphaera recta and H. obliqua were recorded
in 267.0—268.0 m and common Pontosphaeraceae including
Pontosphaera enormis (Fig. 6.24), P. discopora and P. magna,
and  Helicosphaera euphratis in 257.5—258.0 m. Reworked
nannofossils were present on rare occasions. The sediments
above 234.4 m contain mostly poor and poorly preserved nan-
noflora. Some intervals were barren of nannofossils or con-
tained only reworked Paleogene and Upper Cretaceous
specimens. On the other hand, the lowermost part of the section
(234.0—225.0 m) yielded abundant and medium-well pre-
served nannofossils characterized by helicosphers (Heli-
cosphaera ampliaperta,  H. scissura, H. mediterranea,  H. cf.
elongata – see Fig. 6) accompanied by  common Coccolithus
pelagicus and Cyclicargolithus floridanus-abisectus. On rare
occasions, Sphenolithus cf. belemnos and  S.  delphix were re-
corded in depth 225.0—226.0 m (Fig. 7.26—29). Reworked
specimens form a common component of the oryctocoenosis.

background image



Table 2: Caption see on the next page.

background image



Table 2: Distribution of microfossils in the Křepice-5 Borehole. R – rare (approximately <5 %), F – frequent (approx. <10 %), A – abun-
dant (approx. >5 %), D – dominant (>50 %), cf – uncertain determination,  / – sample barren of foraminifers.

background image



Table 3: Distribution of calcareous nannofossils in the Křepice-5 Borehole and biostratigraphic interpretation. * – zones (Martini 1971)
attributed to interval upper Egerian-lower Lower Badenian of Central Paratethys stages (see Table 1). Abundance of Oligocene and Mi-
ocene nannofossil species: A – abundant (>10 specimens per 1 field of view of the microscope), C – common (10—5 specimens per 1 field
of view), F – few (4—1 specimens per 1 field of view), R – rare (<10 specimen per 10 fields of view), VR – very rare (<1 specimens per
10 fields of view), ? – questionable species, f – fragments, r – reworked from the older Oligocene strata. Preservation of calcareous nanno-
fossils: M – moderate (etching or mechanical damage is apparent but majority of specimens are easily identifiable), P  – poor (etching and
especially mechanical damage is intensive making identification of specimens difficult), VP – very poor (etching and mechanical damage
is very intensive, specimens mostly in fragments). Estimates of the abundance of nannofossils in samples: VH – very high (>50 specimens
per 1 field of view of the microscope), H – (50—30 specimens per 1 field of view), M – moderate (30—10 specimens per 1 field of
view), L – low (10—1 specimens per 1 field of view), VL – very low (<10 specimens per 10 fields of view).

Biostratigraphy:  The Slavkov-3 Borehole section may

be subdivided into two intervals:

1. 234—281 m with planktonic foraminifer Paragloborota-

lia semivera and nannofossil species Pontosphaera enormis;

2. above 234 m with foraminifer Cassigerinella boude-

censis  and nannofossil Helicosphaera ampliaperta.

The presence of P. enormis is evidence of the NP25 Zone

(Aubry 1992), Upper Oligocene. The higher interval is the
Lower Miocene according to nannofossils (NN2—NN4),
more precisely the Eggenburgian on the basis of the fora-
minifers  Globigerina dubia, Globigerinoides trilobus, and

Paragloborotalia cf. acrostoma. These facts indicate a sig-
nificant gap or tectonic interval around the depth of 234 m.
The presence of Sphenolithus  belemnos at 225—226 m indi-
cates NN3 Zone correlated with the upper Eggenburgian to
lower Ottnangian (see Table 1).

Paleoecology and paleoenvironment: The abundance

of helicospheres and pontospheres below 234 m indi-
cates shallow-marine settings. The influx of sphenoliths
at 225—226 m reflects a  temporary highstand. The overly-
ing strata contain few Miocene specimens and reworked
coccoliths predominate. This indicates a shallow-marine

background image



Fig. 6. Significant calcareous nannofossils in the Menilite and Krosno lithofacies. PPL – plane-polarized light, XPL – cross-polarized light.
1, 2 – Helicosphaera bramlettei, Křepice-5, 33.0—33.3 m; 1 – PPL; 2 – XPL. 3—5 – Helicosphaera intermedia, Křepice-5, 24.1—24.5 m;
3 – PPL; 4, 5 – XPL at 0

º and 30º. 6 –Helicosphaera cf. elongata, Slavkov-3, 233.0—234.0 m; XPL. 7—10 – Helicosphaera obliqua,

Křepice-5, 29.2—29.4 m; 7, 9 – PPL; 8, 10 – XPL. 11, 12 – Helicosphaera recta, Křepice-5, 24.1—24.5 m; 11 – PPL; 12 – XPL.
13, 14 –  Helicosphaera euphratis, Křepice-5, 29.2—29.4 m; 13 – PPL; 14 – XPL. 15 – Helicosphaera carteri, Slavkov-3, 112.0—114.0 m,
XPL.  16  –  Helicosphaera scissura, Slavkov-3, 233.0—234.0 m, XPL. 17, 18 – Helicosphaera ampliaperta, Slavkov-3, 225.0—226.0 m;
17 – PPL; 18 – XPL. 19, 20 – Helicosphaera mediterranea, Slavkov-3, 225.0—226.0 m; 19 – PPL; 20 – XPL. 21—23 – Pontosphaera
multipora, Křepice-5, 49.2—49.4 m; 21 – PPL; 22, 23 – XPL. 24  –  Pontosphaera enormis, Slavkov-3, 257.5—258.0 m, XPL.
25—27 – Pontosphaera latelliptica, Křepice-5, 49.9—50.2 m; 25 – PPL; 26, 27 – XPL. 28, 29 – Pontosphaera latoculata, Křepice-5,
49.9—50.2 m; 28  – PPL; 29 – XPL. 30 – Pontosphaera magna, Slavkov-3, 257.5—258.0 m; XPL. 31—33 – Pontosphaera discopora,
Slavkov-3, 257.5—258.0 m; 31 – PPL; 32, 33 – XPL.  34—36  –Pontosphaera rothii, Křepice-5, 31.8—32.3 m; 34 – PPL; 35, 36 – XPL.
For figs. 1—29 and 31—36 see scale bar on fig. 20.

background image



Fig. 7. Significant calcareous nannofossils in the Menilite and Krosno lithofacies. PPL – plane-polarized light, XPL – cross-polarized
light. 1—3 – Reticulofenestra lockeri, Křepice-5; 1 – PPL; 2, 3 – XPL. 4—6 – Dictyococcites bisectus, Křepice-5, 29.2—29.4 m; 4 – PPL;
5, 6 – XPL. 7 – Cyclicargolithus floridanus, Křepice-5, 49.9—50.2 m, XPL. 8, 9 – Cyclicargolithus floridanus-abisectus, Stavěšice No. 2,
XPL. 10 – Cyclicargolithus abisectus, Stavěšice No. 7, XPL. 11 – Reticulofenestra minuta, Křepice-5, 29.2—29.4 m, XPL. 12 – Reticu-
lofenestra hillae, Křepice-5, 30.7—31.0 m, XPL. 13—17 – Reticulofenestra ornata, Křepice-5, 25.5—25.8 m; 13 – PPL; 14—17 – XPL.
18  –  Zygrhablithus bijugatus, Křepice-5, 33.0—33.3 m, PPL. 19, 20 – Umbilicosphaera rotula, Slavkov-3, 225.0—226.0 m; 19 – PPL;
20 – XPL. 21, 22 – Syracosphaera pulchra, Křepice-5, 33.0—33.3 m; 21 – PPL; 22 – XPL. 23  –  Syracosphaera sp., Křepice-5,
33.0—33.3 m, XPL. 24  –  Rhabdosphaera  sicca,  Slavkov-3, 267.0—268.0 m, PPL. 25  –  Sphenolithus moriformis, Křepice-5, 28.6—29.0 m,
XPL.  26  – Sphenolithus delphix, Slavkov-3, 225.0—226.0 m, XPL. 27—29 – Sphenolithus belemnos, Slavkov-3, 225.0—226.0 m, XPL at 0



º and 45º.  30 – Discoaster deflandrei, Slavkov-3, 225.0—226.0 m, PPL. 31, 32 – Triquetrorhabdulus carinatus, 257.7—258.0 m;

31 – PPL; 32 – XPL. 33, 34 – Coccolithus eopelagicus, Křepice-5, 44.5—44.7 m; 33 – PPL; 34 – XPL. 35, 36 – Braarudosphaera big-
elowii, XPL; 35 – Stavěšice No. 4, fragment; 36 – Slavkov-3, 257.5—258.0 m.  All figures the same size – for scale bar see fig. 26.

background image



Fig. 8. Log of the Slavkov-3 Borehole. 1 – grey marly shale, 2 – dark
greenish-grey shale, 3 – grey calcareous sandstone, for other symbols
see abbreviations to Fig. 2.

environment, input of terrigenous material, and probably
fluctuating salinity. Benthic foraminiferal assemblages are
low in diversity. The assemblage with Oridorsalis  spp.
characterizes the older part of the section (except the bar-
ren interval at 205—220 m). Faunal turnover occurs ap-
proximately at 205 m depth where Ammonia  gr. beccarii
has its first occurrence. At 151 to 180 m frequent pyritized
diatoms occur indicating nutrient influx and/or a preser-
vation event.


The site was studied in the 2.5 m long test trench exca-

vated between Stavěšice and Nenkovice villages. The ex-
cavation reached 1.25 m of the Ždánice-Hustopeče
Formation with an intercalation of whitish light brown
nannofossil limestones of the Zagórz Horizon (Fig. 9).

Microfossil oryctocoenoses comprise planktonic and

benthic foraminifers and rarely echinoid spines (Irregular-
ia), pyritized diatoms (“Coscinodiscus” spp.), sponge spi-
cules and diatoms. Foraminiferal benthos is solely
calcareous, with abundant buliminids (Fursenkoina, Bo-
livina, Caucasina) but also some rotaliids and nodosari-
ids. The Zagórz Limestone yields nearly monogeneric
assemblage of Cyclicargolithus sp. The overlying sedi-
ments contain rich and moderately preserved nannofossils
relatively low in diversity (Table 6). Abundant Cyclicar-
golithus is accompanied by Zygrhablithus bijugatus,
Braarudosphaera bigelowii, pontospheres including
common  Pontosphaera rothii,  rare  Helicosphaera recta,
and  other species. The proportion of reworked nannofos-
sils (Upper Cretaceous prevails) attains about 1—5 %.

Biostratigraphy:  Joint  presence of “Globigerina”  am-

pliapertura and Helicosphaera recta indicates late Kiscel-
lian age.

Paleoecology and paleoenvironment: Fairly-well diver-

sified benthic foraminiferal assemblage with abundant Bo-
livina spp. (B. dilatata, B. beyrichi, B. gr. crenulata, B. gr.
budensis,  B. semistriata nobilis) and other calcareous taxa
(Fursenkoina mustoni, Caucasina tenebricosa, C. schisch-

Fig. 9. Detail of the Zagórz Limestone Horizon in Stavěšice. 1 – ochry
weathered calcareous sandstone, 2 – grey calcareous clay, 3 – light
beige nannofossil limestone (Zagórz Limestone).

background image



Table 4: Distribution of microfossils in Slavkov-3 Borehole. For used signs see Table 2.   Continued on the next page.

kinskayae, Protelphidium sp., Nonion sp., Neugeborina
longiscata, Stilostomella spp., Angulogerina spp., Episto-
minella  sp., Escornebovina orthorapha, Gyroidinoides sp.,
Melonis affinis, etc.) indicate oxic to slightly hypoxic nor-
mal-marine deeper sublitoral. Nannofossil assemblages with
higher numbers of pontospheres, Z. bijugatus, and B. bi-
gelowii are typical for near-shore environment.


The section is situated in the abandoned sandstone

quarry in Boleradice village where the medium-rhythmic
turbidite sediments of the Ždánice-Hustopeče Formation
crop out (Fig. 10a). The turbidite sequence consists of
mudstones, siltstones, and sandstones typical for the Kros-
no lithofacies (Fig. 11). Whitish nannofossil limestones in
the upper part of the section represent the Zagórz Lime-
stone Horizon (Fig. 10b).

Microfossil oryctocoenoses are rich in both planktonic

and benthic foraminifers and locally in fish bones. Benthic
foraminifers are mostly calcareous, less frequently aggluti-
nated (Table 7). Prasinophyte cysts, diatoms, pteropods, and
other microfossils are rather rare. Microfossils are often pre-
served as limonite casts (originally pyritized). Nannofossil
assemblages are of moderate preservation and low in diver-
sity. They contain high numbers of specimens of genera Cy-
clicargolithus and Coccolithus. The deposits from the lower
part of the section are an exception (Table 8, samples B and
E). As well as these genera, they provided Reticulofenestra
minuta, rare helicospheres (Helicosphaera euphratis and H.
recta) and pontospheres (Pontosphaera multipora, P. lato-
cullata,  and  P. enormis). Reworked specimens are present
scarcely. Some layers did not provide any nannofossils. The
intercalations of the Zagórz Limestone yielded bloom of
Cyclicargolithus  floridanus-abisectus  usually without any
other specimens.

background image



Table 4:   Continued.

background image



Table 5:

 Distribution of calcareous nannofossils in the Slavkov-3 Borehole and biostratigraphic interpretation. For explanations see Ta

ble 3.

background image



Fig. 10. Boleradice section (abandoned quarry). a – Krosno lithofacies, b – detail of the Zagórz Limestone Horizon.

Biostratigraphy: Early Egerian age is supported by the

rare presence of Pontosphaera enormis and single Para-
globorotalia opima (P21) at sample 69/05. Joint occur-
rence of both species delimits stratigraphic age in a short
range within the lower part of the NP25 Zone.

Paleoecology and paleoenvironment: Dominance of

low-oxygen specialists (Fursenkoina mustoni, Virgulinella
chalkophila, Bolivina crenulata, Chilostomella spp., Stain-
forthia spp.) among the benthic foraminifers indicates hy-
poxic conditons at the bottom. Agglutinated taxa
(Bathysiphon? sp., Ammodiscus aequispiralis, Trochammina
spp.,  Haplophragmoides spp.) suggest upper bathyal depth,
although typical shelf taxa also rarely occur (Quinqueloculi-
na sp., Guttulina sp.). The abundance of genus Cyclicar-
golithus accompanied by R. minuta reflects highstand.

Table 6: Distribution of calcareous nannofossils in the Stavěšice section and biostratigraphic interpretation. For explanations see Table 3.


The section was studied using archive samples from 7 m

long test trench Němčičky-I. Above the Chert Member of the
Menilite Formation there was the strongly reduced sequence
of the Šitbořice Member. Tectonic reduction of the thickness
is probable. Above this sequence is the Ždánice-Hustopeče
Formation (Fig. 12).

Microfossil assemblages at the base of the Šitbořice Mem-

ber consists of reworked Upper Cretaceous foraminifers. Au-
tochthonous foraminiferal microfauna (plankton and
calcareous benthos) was recovered only from the sample 12b,
in the Ždánice-Hustopeče Formation. The nannoflora con-
tains common specimens of the genus Cyclicargolithus in-
cluding  C. abisectus and pontospheres with Pontosphaera

background image



enormis (samples 12a and 13) and P. rothii.  Heli-
cosphaera recta was recorded in samples 12 and 13. As-
semblages are accompanied by high numbers of reworked
nannofossils from the Upper Cretaceous and older Paleo-
gene strata.

Biostratigraphy:  Presence of Cassigerinella boudecen-

sis in the sample 12b indicates the Early Miocene age
(Cicha et al. 1998) whereas calcareous nannofossils indicate
the early Egerian.

Paleoecology and paleoenvironment:

Only the sample 12b revealed autochtho-
nous foraminiferal fauna. Benthic taxa
represent mostly low-oxygen tolerant
forms (Bolivina gr. crenulata, Bulimina
elongata, Caucasina coprolithoides,
Fursenkoina cf. mustoni). Normal salinity
hypoxic conditions can be considered.
The presence of pontospheres reflects a
near-shore environment.


In the Fore-Magura Unit two composite

sections near Chomýž village were stud-
ied. Both of them consist of isolated out-
crops revealing the transition from the
Menilite to Krosno lithofacies (Fig. 13).

The microfossil oryctocoenoses of the Šit-

bořice Member are extremely poor. Only
single specimens of benthic foraminifers
(Pullenia? sp., Cibicidoides boryslavensis)
and rare pyritized diatoms, sponge spicules,
echinoid spines, fish remains, and phos-
phatic pelets may be autochthonous. Mas-
sive redeposition of Eocene mixed
foraminiferal fauna (predominantly aggluti-
nated benthos) constitutes the major part of
the oryctocoenoses. The same strata also
yield poor nannofossils with Reticulofenes-
tra ornata bloom accompanied by rare Cy-
clicargolithus floridanus-abisectus and
Transversopontis pax (Table  9). A change
in nannoflora was observed immediately
below the onset of the Krosno lithofacies. R.
ornata  disappears and the autochthonous
component is formed by Helicosphaera eu-
phratis, Pontosphaera multipora, P. lato-
culata,  and  Cyclicargolithus floridanus-
abisectus. Moreover, deposits contain frag-
ments of mostly reworked specimens from
the older flysch strata. Some levels were bar-
ren of calcareous nannofossils.

The Krosno lithofacies (Ždánice-Hus-

topeče Formation) contains for fewer of re-
worked flysch-type foraminifers. In the
pseudoassociation of the Krosno Forma-
tion marsh-type agglutinated fauna newly
appears. It is comparable with the fauna of
the Cenomanian—Turonian of the Bohemi-

an Cretaceous Basin (Evolutinella sp., Trochammina aff. in-
flata,  Glomospira sp.). These redepositions were observed
in the samples 5/05A and B. The lowermost part of the
Krosno lithofacies provided rare nannofossils mostly re-
worked from the older strata accompanied by diatoms. Poor
autochthonous nannoflora with Helicosphaera obliqua,  H.
cf.  carteri and H. intermedia was recorded in sample
No. 71A (see Fig. 13). A bloom of Reticulofenestra ornata
with rare Transversopontis obliquipons was observed ap-

Fig. 11. Log of the Boleradice section (abandoned quarry). 1  – grey calcareous
sandstone, 2 – brown grey and grey calcareous shale, 3 – whitish nannofossil lime-
stone (Zagórz Limestone), 4 – grey silty marlstone, 5 – shaly intraclasts, 6 – nan-
nofossil-limestone intraclasts. For other symbols see abbreviations to Fig. 2.

background image



Table 7:

 Distribution of microfossils in the Boleradice section. For explanations see Table 2.

Fig. 12. Log of the Němčičky-I Test Trench. 1 – greenish-grey and
brownish-grey calcareous shales, 2  – grey sandstone, 3 – green-
grey and brown-grey non-calcareous shales with marly slices, 4 – chert,
5 – non-calcareous shale.

proximately 10 m above. In fact, no distinct change in nan-
noflora was observed in this transitional interval.

Biostratigraphy:  The recovered microfauna is com-

mon in the Kiscellian—Egerian of the Central Paratethys.
Nannofossil species H. obliqua indicates zone interval
NP24—NP25, upper Kiscellian to lower Egerian. The oc-
currence of the diatom Odontella  spp. is characteristic
also for the upper Kiscellian and lower Egerian of the
Ždánice Unit (Křepice-5, Boleradice).

Paleoecology and paleoenvironment: The absence of

characteristic planktonic and benthic foraminiferal assem-
blages of the Menilite and Krosno Formations may be
caused by dissolution during early diagenesis. It is any-
how not clear, why at least pyrite cores of foraminifers are
not present as is the case for diatoms. The alternation of
intervals with poor and mostly reworked nannoflora and
Reticulofenestra ornata reflects eustatic fluctuation and
periods of low salinity to fresh water conditions.

Summarizing remarks and discussion


Indices of possible unconformity were observed in the

Slavkov-3 section. At 234 m the first occurrences of several
marker taxa are accumulated although under normal superpo-
sition they would be apart (Cassigerinella boudecensis, Glo-

background image



Table 8: Distribution of calcareous nannofossils in the Boleradice section and biostratigraphic interpretation. For explanations see Table 3.

Table 9: Distribution of calcareous nannofossils in the Chomýž section and biostratigraphic interpretation. For explanations see Table 3.

background image



Fig. 13. Logs of the Chomýž I and II sections. 1 – green-grey and brown-grey shales, 2 – dark brown non-calcareous paper shale, 3 – dark
chert,  4 – brownish marlstone to limestone, 5 – brownish sandy marlstone to limestone, 6 – sandstone, 7 – ochrous pelocarbonate
and beige marl, 8 – grey calcareous shale, 9 – grey calcareous sandstone (slump), for other symbols see abbreviations to Fig. 2.

bigerina dubia, Globigerinoides trilobus, Helicosphaera
ampliaperta). This cummulation reveals a stratigraphic gap
comprising the upper Egerian at least. The first occurrence of
Sphenolithus belemnos just 8 m higher (Fig. 7) indicates that
even the lower part of the Eggenburgian may be missing. An-
other explanation of the gap is tectonic reduction. No addi-
tional indices of this possibility were recorded.


A shallowing is indicated in the Slavkov-3 Borehole by

benthic foraminiferal turnover from the Oridorsalis to Am-
monia assemblage at 203—205 m. While Oridorsalis is

stenohaline bathyal element, Ammonia is euryhaline and
typical of inner shelf settings (Murray 1991). The turnover
coincides with abundant redeposition from the Cretaceous
and Paleogene at the same level. Associated poor nannofos-
sils contain the shallow marine element Braarudosphaera
bigelowii. The shallowing event may be related to sea-level
fall during the late Eggenburgian (Krhovský et al. 1995). It
may also reflect local tectonic event in the basin.

The presence of the isochronous Zagórz Limestone Ho-

rizon allowed interpretation of the paleobathymetric gra-
dient between the Boleradice and Stavěšice sections. The
benthic foraminiferal assemblage with agglutinated taxa
at Boleradice suggests an upper bathyal habitat. The

background image



benthic assemblage at Stavěšice lacks agglutinated taxa,
nannofossils contain high numbers of pontospheres and
other shallow-water species (Z. bijugatus, B. bigelowii)
and reflect a rather deeper sublittoral.

Plankton blooms

The blooms and occurrences of uncommon microplank-

ton in the studied sections indicate paleoenvironmental
perturbations. The recorded microplankton can be classi-
fied in the following ecological groups (niches):

1)  Limacina sp. (Pteropoda) – fully marine epipelagic

plankton. The tests are preserved solely as pyrite casts.

2) Bivalve juveniles. Just one tiny form, always articu-

lated valves preserved as pyrite casts.

3) Clavate planktonic foraminifers – represented by the

genera  Beella  and Bolliella. They may be specialists for
hypoxic water masses analogically to Lower Cretaceous
clavate genera specialized for global hypoxia of the
Ocean of that period (Premoli Silva et al. 1999).

4) Radiolaria – fully marine siliceous microplankton.

Radiolarians are preserved in silica. They are indicators of
waters rich in nutrients (phosphorus) and silica.

5) Prasinophyta (Pterospermella spp., Tasmanites spp.,

leiospheres) – preserved as organic-walled cysts or pyrite
casts. Prasinophyta are green microalgae that may indicate
brackish water in shallow marine habitats.

6) Planktonic diatoms. Several different quite large

forms (see Tables 2 and 7) are preserved as pyrite casts.
They represent probably marine taxa.

7) Bloom taxa of calcareous nannofossils.
The taxonomic composition of blooms was controlled by

nutrients, salinity (normal marine to pliohaline), and possi-
bly other factors. Intervals of rare presence of pyritized
pteropods and bivalve juveniles reflect rather preservation
events then increased productivity. The aragonitic shell of
pteropods is dissolved under the aragonitic lysocline. It
means that the pyritization of shells took a very short time.
The pyritized diatoms occur in some levels together with
pteropods. The same forms of diatoms were recorded from
the Krosno Formation of the Silesian Unit near the Jaslo and
Zagórz Limestone Horizons (Bak 2005). The distribution of
microplankton in the Křepice-5 borehole provokes many
questions. The appearances of individual microplankton
groups are organized in succession: clavate planktonic fora-
minifers > prasinophytes > diatoms > radiolarians, that re-
peats two time. The sequence of environmental changes
may be considered based on the microplankton require-
ments mentioned above. Brackish-water elements (prasino-
phytes) should be explained by flood runoff from a
continental source rather than by a bloom in the freshwater
surface of a waterbed. Both intervals are accompanied by
low-diversity nannofossil assemblages with abundances of:

– Pontosphaera latoculata and P. latelliptica accom-

panied by common R. minuta and few Zygrhablithus biju-
gatus  and Reticulofenestra lockeri,

– Pontosphaera latoculata and  P. latelliptica accom-

panied by common Reticulofenestra lockeri,

–  Reticulofenestra minuta,

– Reticulofenestra minuta and Syracosphaera sp. ac-

companied by Pontosphaera rothii,

–  Dictyococcites bisectus.
The two intervals are separated by nannofloral bloom of

coccolithophore  Reticulofenestra ornata. The endemic
Paratethys species R. ornata and its explosive bloom have
already been described in many works (Stráník et al.
1981a; Nagymarosy 1983; Báldi-Beke 1984; Krhovský et
al. 1992; Melinte 2005, etc.). It is considered an important
correlation event of high stratigraphic validity in the Oli-
gocene of both the Central and Eastern Paratethys. This
bloom is evidence of the extreme ecologic conditions,
probably very low salinity and/or high nutrient levels
(Krhovský et al. 1992). Nagymarosy & Voronina (1992)
pointed out, that blooms of R. ornata were repeated with-
in the zone interval NP22—NP24 and the last rare speci-
mens were recorded in NP25. The youngest R. ornata
bloom correlated with NP24 Zone was observed just be-
fore the onset of the Krosno lithofacies in Křepice-5 Bore-
hole whereas in the Chomýž outcrop it occurs in the lower
part of the Krosno lithofacies. In the Křepice-5, R. ornata
bloom is intercalated by a short interval with Heli-
cosphaera obliqua that indicates restored normal marine
conditions (see Table 3).

Some nannoplankton blooms produced nannofossil

limestone horizons. A Cyclicargolithus bloom was de-
scribed from the Jaslo Limestone Horizon, Subsilesian
Unit (Bubík 1987, 1992), where these placoliths are the
main component of sediment. A monogeneric assemblage
occasionally accompanied by rare other species (Zygrha-
blithus bijugatus, Dictyococcites bisectus, or genus
Pontosphaera) documents an increase in nannoplankton
productivity caused by ecological stress and may reflect
fluctuation of salinity accompanied by an increase in nutri-
ent content. It is correlated within the NP23 Biochron. A
similar bloom was recorded also in Zagórz Limestone Hori-
zon (Haczewski 1989; Bubík & Švábenická 2000) in the
lower part of the Krosno lithofacies. This one probably cor-
responds to NP24 Zone according to the presence of Heli-
cosphaera recta in close proximity to under- and overlying
strata of this horizon. Moreover, a bloom of C. floridanus
was recorded in dark calcareous clays of the Křepice-5
Borehole in 39.9—40.2 m (Švábenická et al. 2005).

Oligocene nannofloral fluctuation is mentioned from

the whole Carpathian area (Nagymarosy 1991; Nagyma-
rosy & Voronina 1992; Krhovský et al. 1992; Melinte
2005) and reflects environmental changes connected with
the stepwise isolation of Paratethys (Rögl 1998).


The result of this research is a stratigraphic framework of

various events verified on reference sections (Table 10).
This framework was finally used for age assignment and
correlation of the studied sections. The Menilite Chert and
the Zagórz Limestone Horizons are important for correla-
tions. Unfortunately, the Jaslo Limestone Horizon was not
found in the studied area and may be primarily missing. In

background image



Table 10: Biostratigraphic range of the significant foraminifers and calcareous nannofossil marker species in the Menilite and Krosno Forma-
tions, Outer Western Carpathians, Czech Republic. 1 – last occurrence by Nagymarosy & Voronina (1992), 2 – first and 3 – last occur-
rences by Young (1998), 4 – first occurrence by Melinte (2005), 5 – first occurrence by Báldi-Beke (1982), 6 – sensu Aubry (1992).

Table 11: Graphically expressed diachronous onset of the Krosno lithofacies in the Outer Group of Nappes, Western Carpathians, Czech
Republic.  1 – Krosno lithofacies, 2 – Zagórz Limestone, 3  – hemipelagic light marls, 4 – hypoxic Menilite lithofacies, 5 – Zagórz
Limestone Horizon, 6 – Reticulofenestra ornata bloom, M.M. – Middle Miocene, * – partim.

background image



the upper part of the Šitbořice Member in the Křepice-5
Borehole no such lithology was encountered. The Jaslo
Limestone Horizon was observed in the northern sector of
the Ždánice-Subsilesian Unit (Bubík 1987, 1992). The
nannofossil acmes of Reticulofenestra ornata are very
useful (see “Plankton blooms” above). The upper acme
served as new local event for correlation. As concerns fora-
miniferal biostratigraphy, the last occurrence of “Globige-

ampliapertura and the first occurrence of

Paragloborotalia opima are both important data within
the upper Kiscellian, but their scarcity limits their practi-
cal use. Very useful marker species is Cassigerinella bou-
decensis. All observations until now confirm that the
species appears at or close to the Oligocene/Miocene
boundary within the Egerian (Table 10).

Final correlation of studied sections confirmed the dia-

chronism of the Krosno lithofacies onset between the
Pouzdřany Unit, Ždánice-Subsilesian Unit, and Fore-Magura
Unit (Table 11). In the Pouzdřany Unit, onset of the Krosno
lithofacies is near the Eggenburgian/Ottnangian boundary
(Stráník et al. 1981b; Krhovský et al. 1995). In the Ždánice-
Subsilesian Unit, the Krosno lithofacies onset varies within
the late Kiscellian and early Egerian. In the case of the
Němčičky section, there is doubt about completeness. It is
possible  that the lower part of Krosno lithofacies is tectoni-
cally reduced. Very distal lithofacies in the Slavkov-3 Bore-
hole is difficult to correlate with other sections with the
typical Menilite and Krosno facies. The whole section may
be a part of the Krosno lithofacies. The Litenčice section
has already been described by Jurášová & Bubík (1989).
The onset of the Krosno lithofacies characterizes clavate
planktonic foraminifer Bolliella navazuelensis. It is be-
lieved that it can be compared with one of the two horizons
with clavate plankton in the Křepice-5 Borehole. The un-
derlying Šitbořice Member at Litenčice contained Heli-
cosphaera recta ca. 50 m below the onset.

The Fore-Magura Unit (Chomýž)  shows the same age for

the Krosno base in terms of biostratigraphy. The last Reti-
culofenestra ornata bloom, anyhow occurs within the
lowermost Krosno lithofacies while in the Ždánice Unit it
takes place in the uppermost part of the Menilite Forma-
tion (Křepice-5). The R. ornata bloom allows higher reso-
lution correlation  than biostratigraphy here.


The nannofossil blooms and the occurrence of prasino-

phytes and diatoms in the upper part of the Menilite For-
mation reflects paleoenvironmental perturbations, such as
freshwater runoff (floods), decreased salinity, water stratifi-
cation, high nutrient input, and sea-level fluctuations
probably connected with climatic change and gradual iso-
lation of the Protoparatethys during the Oligocene.

Micro- and nannofossils changed during the  onset of

the Krosno lithofacies. Autochthonous species occur in
low numbers and reworked fossils from older Paleogene
and Upper Cretaceous strata prevail. Autochthonous as-
semblages higher in diversity indicate restored contact

with the open sea. Alpine orogenic movements supplied
basins with high numbers of reworked fossils.

Correlation based on biostratigraphy and a set of events

brought evidence for diachronism in the onset of the Kros-
no lithofacies. In the Pouzdřany Unit it appears at the top of
the Eggenburgian – NN3 Zone, in the Ždánice-Subsilesian
at the upper Kiscellian above the R. ornata bloom, and in
Fore-Magura below the R. ornata bloom (see Table 11).

The Zagórz Limestone intercalations attributed to the

NP25 Zone are important biostratigraphic horizons in the
Krosno lithofacies of the Ždánice-Subsilesian Unit.

Acknowledgments: The financial support of the Grant
Agency of the Czech Republic (Grant No. 205/03/0154) is
gratefully acknowledged.


Aubry M.P. 1990: Handbook of Cenozoic calcareous nannoplank-

ton. Book 4: Heliolithae (helioliths, cribriliths, lopadoliths and
others).  Micropaleontology Press, 1—181.

Aubry M.P. 1992: Late Paleogene calcareous nannoplankton evo-

lution: a tale of climatic deterioration. In: Prothero D.R. &
Berggren W.A. (Eds.): Eocene-Oligocene climatic and biotic
evolution. Princeton University Press, 272—309.

Báldi T. 1980: The early history of the Paratethys. Földt. Közl.,

Bull. Hung. Geol. Soc. 110, 456—472 (in Hungarian with En-
glish resume).

Báldi T. & Seneš J. 1975: Die Definition der Zeitenheit OM-

Egerien. In: Báldi T. & Seneš J. (Eds.): Chronostratigraphie
und Neostratotypen, Miozän der Zentralen Paratethys, Bd. II,
OM Egerien. Veda, Bratislava, 41—42.

Báldi-Beke M. 1982: Helicosphaera mediterranea Müller, 1981,

and its stratigraphical importance in the Lower Miocene. INA
Newsletter 4, 2, 104—106.

Báldi-Beke M. 1984: The nannoplankton of the Transdanubian

Palaeogene formations. Geol. Hung., Ser. Palaeont. 43, 7—307
(in Hungarian with English resume).

Bak K. 2005: Foraminiferal biostratigraphy of the Egerian flysch sedi-

ments in the Silesian Nappe, Outer Carpathians, Polish part of the
Bieszczady Mountains. Ann. Soc. Geol. Pol. 75, 1, 71—93.

Berggren W.A., Kent D.V., Swisher CC. & Aubry M.P. 1995: A re-

vised Cenozoic geochronology and chronostratigraphy.
SEPM, Spec. Publ. 54, 129—212.

Bubík M. 1987: Oligocene calcareous nannoplankton of the Menil-

itic Formation with the Jaslo Limestone horizon from Bystřice
nad Olší (the Subsilesian Unit, the West Carpathians). Kni-
hovnička ZPN 6b, Miscellanea Micropalaeontologica II/2,
45—57 (in Czech with English Summary).

Bubík M. 1992: Low diversity calcareous nannoplankton assemblages

from the Oligocene Šitbořice Member of the Menilitic Formation
(West Carpathians, Czechoslovakia) from Bystřice nad Olší. In:
Hamršmíd B. & Young J. (Eds.): Nannoplankton research. Pro-
ceedings of the Fourth INA Conference, Prague 1991, Vol: II:
Tertiary Biostratigraphy and Paleoecology; Quaternary cocco-
liths. Knihovnička ZPN 14b, 223—245.

Bubík M. & Švábenická L. 2000: New information on the Ždánice

Unit on the map sheet 34—221 Kyjov obtained during field
season 1999. Zpr. Geol. Výzk. 1999 10—12 (in Czech with En-
glish Abstract).

Cicha I., Rögl F., Rupp Ch. & Čtyroká J. 1998: Oligocene-Miocene

foraminifera of the Central Paratethys. Abh. Senckenberg.
Naturforsch. Gesell. 549, 1—325.

background image



Haczewski G. 1981: Extend and lateral variation of individual tur-

bidites in flysch horizons with Jaslo limestones, Krosno Beds,
Polish Carpathians. Stud. Geol. Pol. 68, 13—27.

Haczewski G. 1984: Lamina correlation of Jaslo and Zagórz lime-

stone chronohorizons (Outer Carpathians). Kwart. Geol. 28,
675—688  (in Polish).

Haczewski G. 1989: Calcareous nannofossils of the Menilite-Kros-

no group – taxonomy, biostratigraphic correlations and
genesis. Ann. Soc. Geol. Pol. 59, 435—523 (in Polish).

Jucha S. 1969: Jaslo Claystone and its stratigraphic and sedimento-

logic significance in the Menilite and Krosno groups (Flysch
Carpathians).  Prace Geol. Pol. Akad. Nauk, oddz. Kraków 52,
1—128 (in Polish).

Jurášová F. 1987: Biostratigraphy and ecology of the Šitbořice

Member, Křepice-5 Borehole. Knihovnička ZPN 6b, Miscella-
nea Micropalaeontologica II/2, 27—44 (in Czech).

Jurášová F. & Bubík M. 1989: Foraminifers and nannofossils of

the Šitbořice Member at the locality of Litenčice. MS Archiv
ČGS, Praha 1—20 (in Czech).

Koszarski L. & Źytko K. 1959: Genesis and stratigraphic position

of the Jaslo Claystone in the Menilite-Krosno group, Central
Carpathians. Kwart. Geol. 3, 996—1115 (in Polish).

Koszarski L. & Źytko K. 1961: Jaslo Claystone of the Menilite-

Krosno group, Central Carpathians. Biul. Państw. Inst. Geol.
166, 87—219 (in Polish).

Krhovský J., Adamová M., Hladíková J. & Maslowská H. 1992: Pa-

leoenvironmental changes across the Eocene/Oligocene bound-
ary in the Ždánice and Pouzdřany units (Western Carpathians,
Czechoslovakia): the long-term trend and orbitally forced
changes in calcareous nannofossil assemblages. In: Hamršmíd
B. & Young J. (Eds.): Nannoplankton research. Proceedings of
the Fourth INA Conference, Prague 1991, Vol: II: Tertiary Bio-
stratigraphy and Paleoecology; Quaternary coccoliths. Kni-
hovnička ZPN 14b, 105—187.

Krhovský J., Bubík M., Hamršmíd B. & Š astný M. 1995: Lower

Miocene of the Pouzdřany Unit, the West Carpathian Flysch
Belt , Southern Moravia. New results in Tertiary of West Car-
pathians II. Knihovnička ZPN 16, 73—83.

Martini E. 1971: Standard Tertiary and Quaternary calcareous nan-

noplankton zonation. In: Farinacci A. (Ed.): Proceedings of
the Second Planktonic Conference Roma 1970. Edizioni Tec-
noscienza,  Roma, 2, 739—785.

Melinte M.C. 2005: Oligocene palaeoenvironmental changes in the

Romanian Carpathians, revealed by calcareous nannofossils.
In: Tyszka J., Oliwkiewicz-Miklasinska M., Gedl P. & Kamins-
ki M. (Eds.): Methods and applications in micropalaeontology.
Stud. Geol. Pol. 124, 341—352.

Molčíková V. & Stráník Z. 1987: The calcareous nannoplankton

from the Ždánice-Hustopeče Formation and its relation to the
overlying sediments. Knihovnička ZPN 6b, Miscellanea Micro-
palaeontologica  II/2, 59—76 (in Czech with English Summary).

Murray J. 1991: Ecology and palaeoecology of benthic foraminifera.

Longman Scientific & Technical, Harlow—New York, 1—397.

Nagymarosy A. 1983: Mono- and duospecific nannofloras in Early

Oligocene sediments of Hungary. Proc. K. Nederl. Akad. Wet.,
Ser. B 86, 3, 273—283.

Nagymarosy A. 1991: The response of the calcareous nannoplank-

ton to the Early Oligocene separation of the Paratethys. INA
Newsletter 13, 2, 62—63.

Nagymarosy A. & Voronina A.A. 1992: Calcareous nannoplankton

from the Lower Maykopian beds (Early Oligocene, Union of
Independent States). In: Hamršmíd B. & Young J. (Eds.): Nan-
noplankton research. Proceedings of the Fourth INA Confer-
ence, Prague 1991, Vol. II: Tertiary Biostratigraphy and
Paleoecology; Quaternary coccoliths. Knihovnička ZPN 14b,

Picha F.J., Stráník Z. & Krejčí O. 2006: Geology and hydrocarbon

resources of the Outer West Carpathians and their foreland,
Czech Republic. In: Golonka J. & Picha F.J. (Eds.): The Car-
pathians and their foreland: Geology and hydrocarbon re-
sources. Mem. Amer. Assoc. Petroleum Geol., Tulsa 49—176.

Potfaj M. 1983: Magura Sandstone and Malcov Member in the

Orava region.  Geol. Práce, Spr. 79, 117—140 (in Slovak).

Premoli Silva I., Erba E., Salvini G., Locatelli C. & Verga D. 1999:

Biotic changes in Cretaceous oceanic events of the Tethys. J.
Foram. Res. 29, 4, 352—370.

Rögl F. 1998: Palaeogeographic considerations for Mediterranean

and Paratethys Seaways (Oligocene to Miocene). Ann.
Naturhist. Mus. Wien 99A, 279—310.

SenGupta B. & Machain-Castillo M.L. 1993: Benthic foraminifera in

oxygen-poor habitats. Mar. Micropaleontology 20, 183—201.

Stráník Z. 2004: Explanations to geological map of the Czech Re-

public 1:25,000, Sheet 25—312 Holešov. Česká geol. služba
1—63 (in Czech).

Stráník Z., Jurášová F. & Peslová H. 1981a: Šitbořice Member of

the Křepice-5 Borehole. Zemní Plyn Nafta 26, 4, 701—710 (in
Czech with English summary).

Stráník Z., Hanzlíková E. & Jurášová F. 1981b: Stratigraphic posi-

tion of the Boudky Marls within the framework of the Oli-
gocene-Miocene stage. Zemní Plyn Nafta 26, 4, 689—699 (in
Czech with English Summary).

Stráník Z. & Švábenická L. 2004: Onset of the Krosno sedimenta-

tion of the Carpathian Flysch belt in Moravia. Geol. Výzk. na
Moravě a ve Slezsku v roce 2003, 36—39.

Stráník Z., Hrouda F., Otava J., Gilíková H. & Švábenická 2007:

Upper Oligocene—Lower Miocene Krosno lithofacies in the
Carpathian Flysch Belt (Czech Republic): sedimentology,
provenance and magnetic fabrics. Geol. Carpathica 58, 4, in

Świdziński H. 1961: La série de Richvalddans les Carpathes Fly-

scheuses.  Bull. Acad. Pol. Sci. Sér. Sci. Géol. Géogr. 9, 2,

Švábenická L. & Stráník Z. 2005: Nannofloral changes in the Oli-

gocene deposits of the Ždánice Unit, Křepice-5 borehole (Flysch
belt of Western Carpathians, Czech Republic). Zprávy o geol.
výzk. v roce 2004, 91—93 (in Czech with English Abstract).

Švábenická L., Bubík M., Stráník Z. & Otava J. 2005: Microfossil

changes near the onset of the Krosno lithofacies in the Car-
pathian Flysch, South Moravia. In: Harzhauser M. & Zuschin
M. (Eds.): Patterns and processes in the Neogene of the Medi-
terranean region. Abstracts of the 12


 Congress R.C.M.N.S.,

Vienna 2005, 224—226.

Varol O. 1998: Palaeogene. In: Bown P.R. (Ed.): Calcareous nan-

nofossil biostratigraphy. British Micropalaeontological Soci-
ety,  London, 200—224.

Young J.R. 1998: Neogene. In: Bown P.R. (Ed.): Calcareous nan-

nofossil biostratigraphy. British Micropalaeontological Soci-
ety,  London, 225—265.

background image



Appendix 1

Calcareous nannofossil taxa mentioned in the text in alphabetical
order of genera epithets
Braarudosphaera bigelowii (Gran et Braarud) Deflandre
Coccolithus pelagicus (Wallich) Schiller
Coccolithus eopelagicus (Bramlette et Riedel) Bramlette et Sullivan
Coronocyclus nitescens (Kamptner) Bramlette et Wilcoxon
Cyclicargolithus abisectus (Müller) Wise
Cyclicargolithus floridanus (Roth et Hay) Bukry
Dictyococcites bisectus (Hay, Mohler et Wade) Bukry et Percival
Discoaster deflandrei Bramlette et Riedel
Helicosphaera ampliaperta Bramlette et Wilcoxon
Helicosphaera bramlettei Müller
Helicosphaera carteri (Wallich) Kamptner
Helicosphaera compacta Bramlette et Wilcoxon
Helicosphaera elongata Theodoridis
Helicosphaera euphratis Haq
Helicosphaera intermedia Martini
Helicosphaera mediterranea Müller
Helicosphaera obliqua Bramlette et Wilcoxon
Helicosphaera recta (Haq) Jafar et Martini
Helicosphaera scissura Müller
Pontosphaera discopora Schiller
Pontosphaera enormis (Locker) Perch-Nielsen
Pontosphaera latelliptica (Báldi-Beke) Perch-Nielsen
Pontosphaera latoculata (Bukry et Percival) Perch-Nielsen
Pontosphaera magna Haq
Pontosphaera multipora (Kamptner) Roth
Pontosphaera obliquipons (Deflandre) Hay, Mohler et Wade
Pontosphaera plana (Bramlette et Sullivan) Haq
Pontosphaera rothii Haq
Reticulofenestra hillae Bukry et Percival
Reticulofenestra lockeri Müller
Reticulofenestra minuta Roth
Reticulofenestra ornata Müller
Rhabdosphaera sicca Stradner
Sphenolithus belemnos Bramlette et Wilcoxon
Sphenolithus delphix Bukry
Sphenolithus dissimilis Bukry et Percival
Sphenolithus moriformis (Brönnimann et Stradner) Bramlette et
Syracosphaera pulchra Lohmann
Triquetrorhabdulus carinatus Martini
Umbilicosphaera rotula (Kamptner) Varol
Zygrhablithus bijugatus (Deflandre) Deflandre

Appendix 2

Foraminiferal taxa mentioned in the text and tables in alphabetical
order of genera epithets
Acarinina broedermanni (Cushman)
Acarinina soldadoensis (Bronnimann)
Ammodiscus aequispiralis Subbotina
Ammonia beccarii (Linne)
Beella rohiensis (Popescu et Brotea)
Biapertorbis alteconica (Popescu et Brotea)
Bolivina beyrichi beyrichi Reuss
Bolivina beyrichi carinata Hantken
Bolivina budensis (Hantken)
Bolivina crenulata Cushman
Bolivina dilatata Reuss
Bolivina fastigia Cushman
Bolivina hebes Macfadyen
Bolivina semistriata nobilis Hantken
Bolliella navazuelensis (Molina)
Bulimina elongata d’Orbigny
Cassidulina laevigata d’Orbigny

Cassigerinella boudecensis Pokorny
Catapsydrax dissimilis (Cushman et Bermudez)
Catapsydrax unicavus Bolli, Loeblich et Tappan
Caucasina coprolithoides (Andreae)
Caucasina schischkinskayae (Samoilova)
Caucasina tenebricosa Pishvanova
Chiloguembelina cubensis (Palmer)
Cibicidoides borislavensis (Aisenstat)
Cibicidoides pachyderma (Rzehak)
Cribroelphidium granosum (d’Orbigny)
Elphidium subtypicum Papp
Epistominella binominata (Subbotina)
Epistominella typica (Subbotina)
Escornebovina orthorapha (Egger)
Euuvigerina germanica Cushman et Edwards
Fursenkoina mustoni (Andreae)
Fursenkoina schreibersiana (Czjzek)
“Globigerina”  ampliapertura Bolli
Globigerina anguliofficinalis Blow
Globigerina dubia Egger
Globigerina euapertura Jenkins
?Globigerina globularis Roemer
Globigerina lentiana Roegl
Globigerina officinalis Subbotina
Globigerina ottnangiensis Roegl
Globigerina ouachitaensis Howe et Wallace
Globigerina praebulloides Blow
Globigerina postcretacea Mjatliuk
Globigerina quinqueloba Natland
Globigerina wagneri Roegl
Globigerinella obesa (Bolli)
Globigerinoides primordius Blow et Banner
Globigerinelloides trilobus (Reuss)
Globocassidulina globosa (Hantken)
Globocassidulina oblonga (Reuss)
Globocassidulina subglobosa (Brady)
Globorotaloides suteri Bolli
Globotruncanella petaloidea (Gandolfi)
Globoturborotalita woodi (Jenkins)
Glomospira charoides (Jones et Parker)
Glomospira gibbosa (Subbotina)
Glomospira gordialis (Jones et Parker)
Gyroidinoides byramensis (Cushman et Todd)
Gyroidinoides girardanus (Reuss)
Gyroidinoides nitidus (Reuss)
Karreriella postsiphonella (Spandel)
Melonis affinis (Reuss)
Melonis pompilioides (Fichtel et Moll)
Morozovella trichotrocha (Loeblich et Tappan)
Morozovella aequa (Cushman et Renz)
Neugeborina longiscata (d’Orbigny)
Paragloborotalia acrostoma (Wezel)
Paragloborotalia nana (Bolli)
Paragloborotalia opima (Bolli)
Paragloborotalia pseudocontinuosa (Jenkins)
Paragloborotalia semivera (Hornibrook)
Pseudohastigerina micra (Cole)
Pullenia bulloides (d’Orbigny)
Semivulvulina pectinata (Reuss)
Sigmoilinita tenuis (Czjzek)
Tenuitella brevispira (Subbotina)
Tenuitella evoluta (Subbotina)
Tenuitella munda (Jenkins)
Tenuitellinata angustiumbilicata (Bolli)
Tenuitellinata pseudoedita (Subbotina)
Trochammina inflata (Montagu)
Trochamminoides variolarius (Grzybowski)
Uvigerina moravia Boersma
Uvigerina semiornata d’Orbigny
Virgulinella chalkophila (Hagn)