background image


Central Paratethyan shark fauna (Ipolytarnóc, Hungary)




Department of Palaeontology, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117, Budapest, Hungary;

Present address: Université de Lausanne, Institute de Minéralogie et Géochimie, Lausanne UNIL, CH-1015 Humense, Switzerland

(Manuscript received February 24, 2006;


accepted in revised form June 22, 2006)

Abstract: Previously described selachian remains from the Lower Miocene sandstone at Ipolytarnóc (north-eastern
Hungary) have been revised, together with recently collected material from the same locality. The fauna is diverse and
includes 19 genera with 16 certain species, from which 5 newly reported from this locality (Squalus, Centrophorus,
Isistius, Mitsukurina, Scyliorhinidae). The earlier described four species that originated from the area – Notidanus
paucidens Koch, 1903, Notidanus diffusidens Koch, 1904, Lamna tarnoczensis Koch, 1903, Oxyrhina neogradensis
Koch, 1903 – have been redetermined as Notorynchus primigenius, Carcharias acutissima and Parotodus benedeni.
The Chondrichthyes fauna represents a warm-temperate, subtropical climate with wide habitation range that was
typical in the Alpine Foreland Basin and the Central Paratethys during the Lower Miocene.

Key words: Lower Miocene, Paratethys, Ipolytarnóc, molasse, shark teeth.


The natural geological Museum of Ipolytarnóc is located
in NE Hungary (48

º14’12” N; 19º39’25” E) near to the

Slovak border (Fig. 1). The area has been known for its
fossils for more than 150 years. Detailed descriptions of
footprints of different Miocene mammals and birds, and
the fossil flora were published by Kordos (1985) and
Hably (1985).

The shark teeth rich marine beds of Ipolytarnóc were

first reported by Koch (1903, 1904). He described 25 spe-
cies from 8 genera, with 4 new species among them:
Notidanus paucidens,  Lamna tarnoczensis,  Oxyrhina neo-
gradensis and Notidanus diffusidens.

The aim of this work is to give a detailed revision of

this shark fauna according to the modern nomenclature
and systematic paleontology. Morphology of the shark
teeth often shows striking differences with respect to the

two jaws of the shark (dignathic heterodonty) but differ-
ences occur even within one jaw (monognathic hetero-
donty). Morphological variations could be more complex
if ontogenetic changes (e.g. Taniuchi 1970; Compagno
1984) and sexual dimorphism (e.g. Bass et al. 1973) are
also taken into account. Hence, detailed investigation of
the recent material is rather important from the paleonto-
logical point of view (e.g. Sadowsky 1970; Bourdon
2003). Lack of such knowledge resulted in a high number
of fossil species in the early times (e.g. Agassiz 1833—43).
The selachian remains from Ipolytarnóc were examined
and revised in view of modern studies.

Since Koch’s works, Leriche (1910), Vitális (1942),

Hano & Seneš (1952) and Schultz (1969) took this fauna
into account and included some of the species in their fau-
na lists. In 1984, Kordos & Solt reported a revised and re-
duced fauna list without any details, mentioning 12 species
from 9 genera.

Most of the teeth described by Koch

(1903, 1904) were placed in the collec-
tion of the Hungarian Geological Institu-
tion (MÁFI) and the Hungarian Museum
of Natural History (MTM). In the last
100 years many other shark teeth have
arrived in these museums from the area.
In 1944 the fossil sites of Ipolytarnóc be-
came protected and since then many re-
mains have been deposited in the
National Park Collection as well (IT).

The revision was performed on the fos-

sils in these three collections. The latter
one was completed by fossils collected
recently in the framework of systematic
field investigations in summer 2002 and
2003. During detailed excavation proce-
dures and screen-washing, several new

Fig. 1. Location of the site.

background image



taxa for the locality have been discovered. However, most
of the teeth have been shown to be broken, fragmented
and worn. The amount of determinable teeth is compara-
tively small and does not allow reconstruction of com-
plete artificial dentition sets. Altogether more than 1500
items have been studied, for the revision only the well-
preserved remains were classified (see Appendix in data
repository or web version at

The remains were compared with the fauna of Mučín

(pers. com. Hornáček 2003) in Slovakia, which is very
close to the state boundary (Fig. 1). It is characterized by
teeth collected from beds of comparable facies and age.

The systematic chapter and the anatomical description

of the teeth largely rely on the works of Cappetta (1987)
and Purdy et al. (2001). The fauna lists are restricted most-
ly for the type species; the remains figured by Koch (1903,
1904) and those references closely related to the Central
Paratethys. The teeth are figured according to their posi-
tion in the jaw (e.g. upper teeth pointed downwards) and
usually in lingual view. Hereafter, the following abbrevia-
tions are used: H – height and W – width of the teeth in
mm. The different view of the teeth as: lin – lingual,
lab – labial, mes – mesial,  oc – occlusal,  bas – basal.

Abbreviations of the different collections are MÁFI – Hungarian

Geological Institution; MTM – Hungarian Museum of Natural Histo-
ry and IT – National Park at Ipolytarnóc, which is followed by the
collection number (see Figures and Appendix in web version).

Geological setting

The marine Miocene sediments of Ipolytarnóc are part

of the Upper  Eocene to Lower  Miocene fill of the North
Hungarian Paleogene Basin, which overlies the Paleozoic
crystalline basement (e.g. Báldi 1983). In the Oligocene
and the Early  Miocene the area was a part of the Central

Paratethys and two formations of marine beds are exposed
at Ipolytarnóc (Fig. 2). The Szécsény Formation is a fine-
grained, pelagic unit, representing a deep sublittoral to
shallow bathyal environment. Upsection the regressional
sequence grades into the Pétervására Formation, which
was formed under shallow-marine, near-shore conditions
and contains the shark-teeth bearing beds. Biostratigraphi-
cal data clearly demonstrate an Eggenburgian age for the
Pétervására Formation (e.g. Bartkó 1985).

The marine basin was filled up at the end of the Eggen-

burgian or at least in the Early Ottnangian and was cov-
ered by terrestrial beds of the Zagyvapálfalva Formation.
These layers contain the famous petrified pine tree, the
footprint sandstones (“Ipolytarnóc beds”) and the abun-
dant Miocene plant remains. Subsequently, the succession
was buried by the “lower rhyolite tuff” (Gyulakeszi For-
mation), which displays a K/Ar age of 19.6 ± 1.4 Ma (Bart-
kó 1985), however recently these tuff layers were re-dated
by subsequent methods (Pálfy et al. 2006) showing a
younger age of 

~ 17.5 Ma.

Systematic Paleontology

Classis:  Chondrichthyes Huxley, 1880

Ordo:  Hexanchiformes Buen, 1926

Familia:  Hexanchidae Gray, 1851

Genus:  Notorynchus  Ayres, 1855

The family of the six and seven gills sharks includes three recent

genera: Heptranchias, Hexanchus and Notorynchus. They show a
strong dignathic and monognathic heterodonty. The upper jaw con-
tains one or two symphysials (one of them could be medial), six to
nine anterolaterals and 11—13 posteriors; the lower jaw have one
medial, six anterolaterals and 8 to 9 posteriors (Compagno 1984;
Purdy et al. 2001).

Fig. 2. Stratigraphic position of the Lower Miocene beds at Ipolytarnóc.

background image



Notorynchus primigenius (Agassiz, 1843)

Fig. 3.1—3

1833—43  Notidanus primigenius n. sp. – Agassiz, p. 218—220,

pl. 27, figs. 6—17

1903  Notidanus primigenius, Ag. – Koch, p. 27, pl. I, fig. 1
1903  Notidanus  cfr.  serratissimus, Ag. – Koch, p. 27, pl. I,

fig. 2

1903  Notidanus  paucidens  n. sp. – Koch, p. 27—28, pl. I,

fig. 3

1904  Notidanus diffusidens n. fr. – Koch, p. 202, text-fig. 1
1952  Notidanus gigas Sismd. – Hano & Seneš, p. 331—332,

pl. L, figs. 3a—d

1969  Hexanchus primigenius (Agassiz, 1843) – Schultz,

p. 68—73, pl. I, figs. 1—7

1970  Hexanchus primigenius (Agassiz, 1843) – Cappetta,

p. 15—17, pl. 4, figs. 11—19

1971  Hexanchus primigenius (Ag.) – Brzobohatý & Schultz,

p. 720—721,  pl. 1, figs. 1—9

R e f e r r e d   m a t e r i a l : 10 lower anterolateral, 2 lower medial,

1 upper anterolateral teeth.

The lower anterolaterals are labiolingually compressed and me-

siodistally elongated with one main cusp followed by gradually
decreasing lateral cusplets. Most of them are broken, but the typi-
cal Notorynchus character – the small unequal denticles, increas-
ing in size apically on the mesial side of the main cusp (Applegate
1965) – can be observed on them (Fig. 3.1).

The two lower medials (Fig. 3.2: Koch’s Notidanus diffusidens

and IT-III-140, H: 12, W: 12) have a main cusp with 3—4 lateral
cusplets on both sides. These teeth look like two lower anterolater-
als merged in one.

The only upper anterolateral is large in size (H: 21, W: 20) having a

main cusp with one mesial and two distal, separated lateral cusplets.
Koch (1903) based his Notidanus paucidens on this tooth (Fig. 3.3).

Notorynchus primigenius was defined by Agassiz (1833—43)

based on lower anterolaterals. Koch assigned most of the lower
anterolaterals to this species. For those teeth originating from dif-
ferent jaw positions, he introduced the above-mentioned two spe-
cies. Vitális (1942) studied the recent Hexanchidae species,
reconstructed the jaw of this fossil form and placed the Ipolytarnóc
teeth in the right position. Earlier Leriche (1910) and later Schultz
(1969) made the same notion for the N. paucidens.

The genus is known from the Early Cretaceous. The N. primige-

nius first occurred in the Oligocene and was widespread in the
Miocene (Cappetta 1987).

The recent N. cepedianus (Peron 1807) favours shallow water

habitat in the shelf region and sometimes may show up near the
shore. These forms are bottom-dwellers; their maximum size is
3—4 meters (Compagno 1984).

Ordo:  Squaliformes Goodrich, 1909

Familia:  Squalidae Bonaparte, 1834

Genus:  Squalus Linnaeus, 1758

Squalus sp.

  Fig. 3.4

R e f e r r e d   m a t e r i a l : 2 anterolateral teeth.
The teeth are labiolingually flattened; their crowns curve distally

and have a broad cusp. After a notch the cusp is followed by a
convex, distal enamel shoulder. The apron passes through the bas-
al edge of the root.

The figured specimen is larger (H: 2; W: 2.5) and better pre-

served, but its condition does not allow identification at the species
level. The upper and lower teeth of the Squalus are very similar; the
only difference is that the lower ones are somewhat wider. The
Ipolytarnóc teeth are either left upper or right lower anterolaterals.

The genus is known from the Late Cretaceous. The only Euro-

pean Miocene species, S. almeidae, has been described from France
and Portugal (Cappetta 1987).

From the 14 extant species, the S. acanthias Smith et Radscliffe,

1912 is the most common in the European seas. It inhabits boreal to
warm temperate waters from the intertidal zone down to 900 m. Its
maximum size is 1.6 meter (Compagno et al. 2005).

Familia: Centrophoridae  Bleeker, 1859

Genus:  Centrophorus  Müller et Henle, 1837

Centrophorus sp.

Fig. 3.5

R e f e r r e d   m a t e r i a l : 1 anterolateral tooth.
The tooth is labiolingually flattened (H: 3.5; W: 2.8) and shows a

distally curved, broad crown with a convex distal enamel shoulder
and smooth cutting edge. The apron does not reach the basal edge of
the root. The root itself has a well-developed distolingual hollow. In
the centre of the lingual side, under the uvula, a big foramen (in-
fundibulum) opens, where a deep groove divides the root into two
parts. The tooth shows a strong resemblance to Deania as well,
however the infundibulum is out of the axis of the uvula, opens in a
more mesial position in this genus (pers. comm. Cappetta 2005).

The Centrophorus is known from the Late Cretaceous. Its teeth

are frequent in Miocene bathyal deposits in France (Cappetta 1987).
Holec et al. (1995) has presented two Squalus sp. teeth from Mučín,
which belong to this genus as well.

From the ten recent species the C. granulosus (Bloch et Schneider,

1801) is the best known. It is a common deepwater shark of the
outer continental shelves and the upper part of the continental slopes
(100—1200 m). Its maximum size is 1.5 meter (Compagno et al. 2005).

Familia:  Dalatiidae Gill, 1893

Genus:  Isistius Gill, 1864

Isistius cf. triangulus (Probst, 1879)

Fig. 3.6

1879  Scymnus triangulus n. sp. – Probst, p. 175—176, pl. III,

figs. 35—36

1995  Isistius triangulus (Probst, 1879) – Holec et al., p. 39,

pl. IX, figs. 1—2

R e f e r r e d   m a t e r i a l : 21 lower teeth.
Most of the remains are merely the typical labiolingually flat-

tened, thin, triangular crowns of the lower teeth, which characterize
this genus. Their cutting edges are smooth. The largest tooth has a
height of 3.5 mm and a width of 4.2 mm.

Some teeth are more complete (Fig. 3.6). Their crown has a

wide, thin apron, which goes down to an elliptical hole, called a
button hole. Their root is also very thin and has a mediolingual
foramen. A kind of overlapping margin, a hollow runs both sides
of the teeth, where they connect to each other in the jaw.

The upper teeth are very different from the lower ones (dignathic

heterodonty). These are narrow, pointed teeth, without lateral cus-
plet (Compagno 1984). This kind of tooth has not been found yet.

background image



The genus is known from the Late Paleocene. From the Mi-

ocene the Isistius triangulus (Probst, 1879) was described. Prob-
st’s figure shows a well-marked margin under the crown and the
mediolingual foramen opens in the middle of this margin involv-
ing the crown area as well. This feature is restricted only for the
root area on the examined teeth, and therefore they were described
as I. cf. triangulus. The Isistius was widespread in Europe (Ler-
iche, 1910; Holec et al. 1995), but teeth have turned up in South-
America (Cappetta 1987) and North-America (Purdy et al. 2001)
as well.

Three recent species exist, out of which the I. brasiliensis (Quay

et Gaimard, 1824) shows closer relations to the fossil species. This
is a tropical, epipelagic to bathypelagic (85 to even 3000 m) shark;
younger individuals could be found in shallower water. Its maxi-
mum size is 0.5 meter (Compagno et al. 2005).

Ordo:  Squatiniformes Buen, 1926

Familia:  Squatinidae Bonaparte, 1838

Genus:  Squatina Duméril, 1906

Squatina sp.

Fig. 3.7

R e f e r r e d   m a t e r i a l : 22 lateral teeth.
The crown of these teeth has only one lingually curved cusp. At

its base a low enamel edge runs distally and mesially. On the labial
side the enamel overhangs the root and forms a small apron. The
root is usually flat at its base and has a triangular shape in basal
view with a large foramen in its center (Fig. 3.7/b). On some more
anterior teeth the root lobes bend downwards.

Usually two species has been reported from the Miocene: S.

subserrata and S. biforis. The previous one was widespread in the
entire Paratethys; the latter was reported only from Rapovce (Fig. 1)
(Brzobohatý & Schultz 1971). Koch (1903) described this kind of
teeth as Sphyrna subserrata.

The angel sharks are known from the Upper—Jurassic on. Since

then their dentition has barely changed (Cappetta 1987). The teeth
of the 18 extant species are very similar to each other and one can
hardly distinguish among them. Therefore until a precise study is
made, it is expedient to describe them only at the genus level.

The angel sharks are dorsoventrally flattened. Their appearance

makes them similar to rays, but unlike rays their mouth is in terminal
position and their pectoral fins are separated from their trunk. They
are widespread, inhabiting boreal to tropical waters, from the inter-
tidal zone to the upper continental slope (Compagno et al. 2005).

Ordo:  Lamniformes Berg, 1958

Familia:  Odontaspididae  Müller et Henle, 1839

Teeth of this family are commonly found in Neogene marine

sediments. Among them, S-shaped anterior teeth are the most fre-
quent. Early authors have thus already described many different
Odontaspididae usually under the genus name of Lamna (e.g. Agas-
siz 1833—43; Probst, 1879). Only from Ipolytarnóc seven different
species were reported (Koch 1903). When the knowledge of extant
species widened many fossil species were merged together (e.g.
Leriche 1910).

In many publications a number of further genus names are found,

like Odontaspis (e.g. Leriche 1910), Eugomphodus (e.g. Compag-
no 1984), Synodontaspis (e.g. Cappetta 1987) and Carcharias

Fig. 3.  1—3 – Notorynchus primigenius: 1  – anterolateral (MÁFI-V14907); 2 – anterolateral (MÁFI-V14947), lin (a), mes (b), lab (c);
3  – medial (MÁFI-V14945). 4 – Squalus sp.: anterolateral (IT-M4-3), lab. 5  –  Centrophorus  sp.: anterolateral (IT-III-115), lab (a), lin
(b).  6  –  Isistius cf. triangulus: lower tooth (IT-M4-2),  lab (a), lin (b) (scale bar: 1 mm). 7  –  Squatina  sp.: lateral (IT-M6-1/a), lab (a),
bas (b) and oc (c).  (1 mm scale for Figs. 3—6.)

background image



(e.g. Kemp 1991). Since the decision of the International Commis-
sion on Zoological Nomenclature in 1987 (Opinion 1459), the
Carcharias should be regarded as the valid name whereas Eugom-
phodus and Synodontaspis are junior synonyms (e.g. Kent 1994).
At present two extant genera exist: Odontaspis and Carcharias.
Table 1 summarizes the main characteristic differences between
them (Purdy et al. 2001).

Many important studies were inspired by observations of recent

species (e.g. Carcharias taurus Rafinesque, 1810: in: Cunning-
ham 2000; Sadowsky 1970; Taniuchi 1970). These authors have
shown that the dentition can be very variable and, for example, the
numbers of the lateral cusplet or difference between laterals are
insufficient features to distinguish among species. Other marks,
such as lingual striation on the crown turned out to have not much
taxonomical relevance. Taking into account these works, two Odon-
taspis groups and 2 or 3 Carcharias species can be distinguished
in the Ipolytarnóc fauna.

Genus:  Odontaspis Agassiz, 1838

Odontaspis sp. 1.

Fig. 4.1—4

1903  Lamna  (Odontaspis) cfr. subulata, Ag. – Koch, p. 34,

pl. II, fig. 19

1903  Lamna  (Odontaspis) cfr. duplex, Ag. – Koch, p. 34—35,

pl. II, fig. 20

R e f e r r e d   m a t e r i a l : 1 anterior, 7 lateral teeth.
These teeth are small and usually have two pairs of spike-like

cusplets. The proximal ones are straight and diverge from the main
cusp. Each upper lateral has a distally curved cusp (Fig. 4.1); those
of the lower laterals are straight and they recurve a bit lingually
(Fig. 4.3—4). Some teeth have striation on the lingual side of the
crown. There are teeth that have only one pair of cusplets, however
the shape of these teeth is the same as the others’ (Fig. 4.3).

Koch (1903) named those teeth, which have two pairs of cus-

plets as Lamna (Odontaspis) cfr. duplex and those ones, which
have only one as Lamna (Odontaspis) cfr. subulata.

Odontaspis sp. 2.

Fig. 4.5

1903  Lamna  (Odontaspis) dubia, Ag. – Koch, p. 33, pl. I, fig. 15

R e f e r r e d   m a t e r i a l : 6 anterior teeth.
Four teeth are well-preserved anteriors, each with a straight and

slightly lingually curved crown. Each has one pair of long, straight,
narrow cusplets, which curve a bit. This curvature, however, dif-
fers from that of the Carcharias, which is rather hook-like. One

tooth has weak striation, the rests are smooth (Fig. 4.5). The cut-
ting edges of the cusps do not reach the base of their crowns. The
remaining teeth are broken, not well-preserved, but a straight nar-
row cusplet beside the main cusp is still observable.

The genus Odontaspis first appeared in the Late Cretaceous. Of

the two extant species, knowledge on O. ferox is more extensive.
This shark favours warm-temperate and tropical waters and inhab-
its the bottom of the shelf and the upper continental slope between
15—420 meters. Its maximum size is 3.6 meters (Compagno 1984).

Genus:  Carcharias Rafinesque, 1810

Carcharias  acutissima (Agassiz, 1843)

Fig. 4.6—11

1833—43  Lamna contortidens n. sp. – Agassiz, p. 294—295, pl. 37a,

figs. 21—23

1903  Lamna  (Odontaspis) contortidens, Ag. – Koch, p. 32—33,

pl. I, fig. 14

1903  Lamna tarnoczensis, n. sp. – Koch, p. 33, pl. I, fig. 16
1910  Odontaspis acutissima Agassiz 1844 – Leriche,

p. 261—268,  pl. XIV, figs. 1—27

1995  Synodontaspis acutissima (Agassiz, 1844) – Holec et

al., p. 40—41, pl. X, figs. 3—5 & pl. XI, figs. 1, 3

Referred material: 28 anterior, 1 intermediate, 48 lateral teeth.
This is one of the most abundant species in Ipolytarnóc. The

anteriors are slender, having usually one pair of hook-like cus-
plets. The lingual side of the crown is usually striated. Their heights
range between 14—25 mm and their width between 7—14 mm. One
small intermediate tooth was found (see Fig. 4.9). The laterals are
highly variable. The lower laterals have a straight main cusp, where-
as crowns of the upper ones curve distally and their cusplets are
flattened labiolingually.

The holotype (Koch 1903: fig. a—c) of Lamna tarnoczensis

Koch, 1903 is missing from the collections, only 8 paratypes can
be found (MÁFI V14948). All of them are broken, only 5 are
valuable and can be identified as laterals of this species.

The detailed description of C. acutissima was first given by

Leriche (1910). He merged Agassiz’s (1833—43) three species
Lamna acutissima, L. contortidens and L. dubia under the name of
Odontaspis acutissima. Since Leriche’s revision many authors
cited this species (e.g. Schultz 1969; Cappetta 1970) or even re-
ported reconstructed dentation sets (Reinecke et al. 2001). Recent-
ly Purdy et al. (2001) questioned the validity of this species, based
on Agassiz’s (1843—44) pioneer work. However according to para-
graph of the International Code of Zoological Nomencla-
ture (ICZN 1999) the Carcharias acutissima could be regarded as
a valid name.

The C. acutissima is known from the Oligocene. In the Miocene

it became widespread as shown by its abundant preservation in

Table 1: Differences between the dentition of the genera Odontaspis and Carcharias.

background image



most of the shark-teeth-bearing beds. There are some Pliocene
occurrences too, but these can hardly be separated from the extant
C. taurus (see e.g. Cappetta 1987).

Carcharias  cuspidatus (Agassiz, 1843)

Fig. 4.12—13

1833—43  Lamna cuspidata n. sp. – Agassiz, p. 290, pl. 37a,

figs. 43—50

1903  Lamna  (Odontaspis) cuspidata, Ag. – Koch, p. 32,

pl. I, fig. 13

1903  Lamna denticulata, Ag. – Koch, p. 34, pl. I, fig. 18
1995  Synodontaspis cuspidata (Agassiz, 1844) – Holec et

al., p. 40—41, pl. XI, figs. 2, 4—6 & pl. XII, fig. 1

R e f e r r e d   m a t e r i a l : 1 symphysial, 8 anterior, 6 lateral teeth.
As compared to the previous species, these teeth are more ro-

bust, their crowns are wider, their cusplets are smaller and the

lingual side of the crown is usually smooth. One symphysial
(Fig. 4.13) was distinguished. The anteriors have heights of
18—32 mm and widths of 13—18 mm. The laterals (H: 20—22;
W: 20—21) often have two pairs of cusplets (Fig. 4.12).

The species is known from the European and North American

Oligocene to Miocene strata (Cappetta 1987).

Carcharias  sp.

Fig. 4.14

R e f e r r e d   m a t e r i a l : 1 lateral tooth.
One tiny upper lateral tooth which could not be assigned to any

Carcharias species. Its crown is wrinkled at its base and it has two
pair of slightly hook-like cusplets. This tooth may come from a
juvenile C. cuspidatus.

The genus Carcharias first appeared in the Early Cretaceous.

The above-mentioned two species were widespread in the Mi-

Fig. 4.  1—4 – Odontaspis sp. 1.: 1 – lateral (MÁFI-V14908); 2 – anterior (?) (MÁFI-V14922); 3—4 – laterals (MÁFI-V14908). 5 – Odon-
taspis sp. 2.: anterior (IT-III-65), lin (a), mes (b), lab (c). 6—11 – Carcharias acutissima: 6 – lateral (MÁFI-V5095); 7 – third anterior (MÁFI-
V1621); 8 – first anterior (IT-III-137); 9 – intermediate (IT-108); 10 – lateral (II-133); 11 – first anterior (MTM-V61—322). 12—13 – Car-
charias cuspidatus: 12  – lateral (MÁFI-V14937), lin (a), lab (b); 13  – symphysial (MÁFI-V2273&V2275). 14  –  Carcharias sp.: lateral
(IT-M18-2), lin (a), lab (b). 15—16 – Mitsukurina lineata: 15 – lateral (IT-103), lab (a), lin (b); 16 – anterior (IT-82), lin (a), mes (b), lab (c).

background image



ocene (Cappetta 1987). The extant species C. taurus is very com-
mon in the littoral region of temperate and tropical waters, to depths
of up to 190 m. Its maximum size is 3—3.1 meters (Compagno et al.

Familia:  Mitsukurinidae Jordan, 1898

Genus:  Mitsukurina Jordan, 1898

Mitsukurina lineata (Probst, 1879)

Fig. 4.15—16

1879  Lamna (Odontaspis) lineata n. sp. – Probst, p. 147—149,

pl. II, figs. 41—43

1987  Mitsukurina lineata (Probst, 1879) – Cappetta, p. 92, text-

figs. 81/A—C

1995  Mitsukurina lineata (Probst, 1879) – Holec et al., p. 42,

pl. X, fig. 6

R e f e r r e d   m a t e r i a l : 5 anterior, 3 lateral teeth.
These teeth resemble the Odontaspididae, but they are more slen-

der and more elongated, and do not have lateral cusplets, only
occasionally very small ones may occur. The lingual side of the
crown is strongly striated. These ridges are closely spaced, quite
regular and nearly extend to the apex.

Four of the teeth are lower anteriors (H: 20—25, W: 8.5—10).

Their crowns curve lingually in a sigmoidal shape. The specimen
in Fig. 4.15 has a slightly distally curved crown thus this can be
placed in the 2


 or 3


 position of the lower anterior series. One

first upper anterior was distinguished (IT-120, H: 20; W: 10.5),
with its tip recurving labially in lateral view. The rest of the teeth
are laterals (H: 10—12; W: 

~8—10; see e.g. Fig. 4.16).

The M. lineata is the only reported species from the Miocene. Its

remains mainly occur in Europe (Cappetta 1987). The extant Mit-
sukurina owstoni Jordan, 1898, the goblin shark, is a bottom-
dweller at the outer shelves and on the upper continental slopes (to
over 550 meters). It is of rather unusual appearance: peculiarities
include a pinkish-white colour, soft and flabby body, long caudal
fin, elongated paddlefish-like snout and highly protrusible jaws.
Its maximum size is 3.3 meters (Compagno 1984; Bourdon 2003).

Familia: Lamnidae Müller et Henle, 1838

Genus:  Carcharoides Ameghino, 1901

Carcharoides catticus (Philippi, 1851)

Fig. 5.1—3

1851  Otodus catticus n. sp. – Philippi, p. 24, pl. 2, figs. 5—7
1903  Lamna cfr. compressa, Ag. – Koch, p. 33—34, pl. I, fig. 17
1952  Lamna compressa Ag. – Hano & Seneš, p. 337, pl. LVII,

figs. 4—6

1969  Lamna cattica (Philippi 1846) – Schultz, p. 82—83, pl. 4,

fig. 58

1970  Lamna cattica (Philippi 1846) – Cappetta, p. 23—25, pl. 4,

figs. 5—9

1995  Carcharoides catticus (Philippi 1846) – Holec et al., p. 42,

pl. XII, fig. 2

R e f e r r e d   m a t e r i a l : 3 anterior, 26 lateral teeth.
These teeth have a very thin, labiolingually flattened crown with

a pair of triangular denticles, which are at least as high as one
quarter of the main cusp. Two small, slightly broken (IT-M10-1,

~6; W:  ~4) teeth and one bigger (Fig. 5.2) straight crowned

anterior tooth were distinguished. The other teeth are laterals with

wide crowns at their base (Fig. 5.1). The upper ones curve more
distally (Fig. 5.3) than the lowers. The mesial cutting edge is straight
and convex, while the distal is straight or concave. The root is
small, thin and extends laterally.

The fossil species was first described as Otodus catticus by

Philippi (1851). Cappetta (1987) classified these teeth into the Lam-
nidae and named as Carcharoides catticus. Opposite to this, Purdy
et al. (2001) found that these sorts of teeth belong to the recent
Carcharhinidae species Triaenodon obesus (Rüppell, 1835). Com-
paring the Ipolytarnóc teeth to the T. obesus (e.g. Bourdon 2003),
the recent species appears to be smaller and their roots has more
developed groove on the lingual side. On the other hand, the main
difference between the Lamniformes and Carcharhiniformes is that
the premier one has a crown without pulp cavity (pers. comm.
Cappetta 2005), as is the case of the teeth of Ipolytarnóc.

The remains of this genus are known from the Middle Oli-

gocene till the Middle Miocene (Cappetta 1987).

Genus:  Isurus Rafinesque, 1810

The dentitions of the mako sharks are characterized by teeth that

are never serrated; they are smooth on both labial and lingual sides
and usually lack lateral cusplets. On the root the nutritive groove is
weakly developed, sometimes not visible. The dentition of extant
species includes 2 anteriors, 1 intermediate, 5—7 laterals and 3—4 pos-
teriors in the upper jaw and 3 anteriors, 5—7 laterals and 3—4 posteriors
in the lower jaw (Compagno 1984). The extant species, I. oxyrin-
chus Rafinesque, 1809, displays signs of ontogenetical changes. It
could be observed that as the teeth became more robust, the cutting
edge became less sinuous and the cusps of the laterals curved more
distally (cf. Kemp 1991).

Isurus  desori  (Agassiz, 1843)

Fig. 5.4—6

1833—43  Oxyrhina desori n. sp. – Agassiz, p. 282—283, pl. 37,

fig. 9

1903  Oxyrhina xiphodon, Nötling non Ag. – Koch, p. 35—36,

pl. II, figs. 21a—c

1903  Oxyrhina leptodon, Ag. – Koch, p. 36, pl. II, figs. 22
1969  Oxyrhina desori Agassiz, 1843 – Schultz, p. 79—80,

pl. 3, figs. 41—49

1971  Isurus desori L. Agassiz 1843 – Brzobohatý  & Schultz,

p. 732—733, pl. 3, fig. 2

1995  Isurus desori (Agassiz, 1843) – Holec et al., p. 43,

pl. XIII, figs. 3—4

R e f e r r e d   m a t e r i a l : 7 anteriors, 1 lateral, 2 posterior teeth.
This species is characterized by narrow, erect and symmetrical

first lower anteriors and distally a bit curved first upper anteriors
(Fig. 5.4—5). These teeth are lingually curved; but the tips of the
uppers recurve a bit labially. The tooth shown in Fig. 5.4 is small-
er, has a flexuous crown with cutting edges that do not reach the
base of the crown. It can be attributed to a juvenile individual,
while that in Fig. 5.5 derives from an adult specimen.

Second upper anteriors have longer mesial cutting edge and their

root projects over the base of the crown. From Koch’s (1903)
description, the Oxyrhina leptodon and Oxyrhina xiphodon (O.
desori) were in such a position. The previous is from a juvenile,
the latter is a tooth of an adult specimen.

The crown of the laterals and posteriors (Fig. 5.6) are narrow;

the lowers are erect, the uppers curve distally. Their root projects
over the base of the crown mesially and distally.

background image



The I. desori is thought to be the ancestor of the recent I. oxyrin-

chus (see Kent, 1994), whereas Purdy et al. (2001) claims that the
two species are the same.

Isurus  hastalis  (Agassiz, 1843)

Fig. 5.7—8

1833—43  Oxyrhina hastalis n. sp. – Agassiz, p. 277—278, pl. 34,

figs. 3, 6 & 13—18

1903  Oxyrhina xiphodon, Nötling non Ag. – Koch, p. 35—36,

pl. II, figs. 21d—f

1952  Oxyrhina hastalis Ag. – Hano & Seneš, p. 336, pl. LVI,

figs. 4—5

1969  Oxyrhina hastalis Agassiz, 1843 – Schultz, p. 77—79,

pl. 2, figs. 27—28

1995  Isurus hastalis (Agassiz, 1843) – Holec et al., p. 42—43,

pl. XII, fig. 4

R e f e r r e d   m a t e r i a l :  1 anterior, 2 lateral, 2 posteriors teeth.
The tooth of I. hastalis has a broad, labiolingually flattened

crown that reaches the mesial and distal edge of the root. Notably,
the crown of the upper posterior tooth (Fig. 5.8) is broader than the
tooth of I. desori in the same position (Fig. 5.6).

This species is regarded by some authors (e.g. Siverson 1999)

as the ancestor of the great white shark (Carcharodon carcharias
Linnaeus, 1758) and might be sorted in a different genus and named
as Cosmopolitodus hastalis.

Isurus retroflexus (Agassiz, 1843)

Fig. 5.9

1833—43  Oxyrhina retroflexa n. sp. – Agassiz, p. 281, pl. 33, fig. 10

1952  Oxyrhina hastalis Ag. – Hano & Seneš, p. 336,

pl. LVII, fig. 1

1969  Oxyrhina retroflexa Agassiz, 1843 – Schultz, p. 80—81,

pl. 2, figs. 37—38

1995  Isurus retroflexus (Agassiz, 1843) – Holec et al., p. 43—44,

pl. XII, figs. 3, 5 & pl. XIII, figs. 1—2

R e f e r r e d   m a t e r i a l : 1 anterior, 2 lateral teeth.
These teeth are more robust compared to the other Isurus spe-

cies. The main character is the labial platform-like margin on the
root (Fig. 5.9/a). The laterals have more globular crown tips. The
root projects mesially and distally over the base of the crown. The
distal cutting edge meets the base of the crown with right angles on
the upper lateral teeth. According to Kent (1994) this species might
be the ancestor of the other extant form the I. paucus Guitart, 1966.

The first appearance of the genus was in the Late Paleocene (Cap-

petta 1987). The taxon includes the above-mentioned two extant
species I. oxyrinchus and I. paucus. Although both sharks are pelag-
ic, I. oxyrinchus occupies more near-shore habitats. They favour
tropical and warm waters (over 150 meters), but may occur in boreal
areas as well. Their maximum size is 3.8—4 meters (Compagno 1984).

Familia:  Otodontidae Glückman, 1964

Genus:  Carcharocles  Jordan et Hanibal, 1923

Carcharocles  sp.

Fig. 5.10

R e f e r r e d   m a t e r i a l : 3 teeth.
Although the teeth are worn and broken, remarkable features,

such as the strong, serrated cutting edge can be confidently identi-

fied on all of them. Two specimens exhibit symmetrical crowns.
The third one has a distally curved crown (Fig. 5.10) with convex
mesial and concave distal cutting edge.

In the Miocene the Carcharocles megalodon – huge teeth,

lacking lateral cusplets – and the C. chubutensis – broad crown
with a pair of lateral cusplets – were widespread forms (Cappetta
1987). The latter was redefined by Purdy et al. (2001) as C. subau-
riculatus. These authors reconstructed its dentition from large num-
ber of teeth from the Lee Creek Formation (North America).

The C. megalodon is a well-known and well-studied species.

Several jaw reconstructions were performed by various authors.
Taking all these into account, dimensions of this shark could reach
14—15 meters (Purdy et al. 2001).

Genus:  Parotodus Cappetta, 1980

Parotodus  benedeni  (Le Hon, 1871)

Fig. 5.11—12

1871  Oxyrhina Benedenii – Le Hon, p. 6 with figures
1903  Oxyrhina neogradensis, n. sp. – Koch, p. 36—37, pl. II, fig. 23
1903  Oxyrhina xiphodon, Nötling non Ag. – Koch, p. 35—36,

pl. II, figs. 21j—l

1969  Oxyrhina  cf.  benedeni Le Hon, 1871 – Schultz, p. 81—82,

pl. 2, figs. 37—38

1995  Isurus benedeni (Le Hon, 1871) – Holec et al., p. 44,

pl. XIV, fig. 1—2

2001  Parotodus benedenii (Le Hon, 1871) – Purdy et al., p. 110—113,

text-figs. 23—24

Referred material: 1 anterior, 1 lateral and 1 posterior teeth.
All the three teeth have the same features: the labial side of the

crown is flat; the lingual one is strongly convex. The crown is
intensely curved distally. The mesial cutting edge is convex; the
distal one is concave. They have a broad crown-neck between the
root and the crown. The root is very thick; the ends of the lobes are
globular and robust; the torus is salient and lacks the nutrient groove.

This species was described from Pliocene sediments by Le Hon

(1871). Its earliest appearance was in the Oligocene (Leriche 1910).
Purdy et al. (2001) reconstructed the dentition of this species based
on eighty-five teeth from Lee Creek Mine (North-America). Le
Hon’s holotype is a 2


 anterior tooth in their artificial dentition set.

The holotype of Oxyrhina neogradensis Koch, 1903 (Fig. 5.11)

is a 2


 anterior tooth of this species. The second tooth (IT-72) is

broken and might be an upper lateral tooth. The third one is a small
tooth (Fig. 5.12) that could be in posterior position. This latter
resembles the lateral teeth of Leriche’s (1910) Alopias latidens, but
our tooth is more robust and its crown-neck is broader.

The Parotodus benedeni was a pelagic shark; based on the re-

constructed dentition its estimated maximum size is 6—7.5 meters.
The genus died out at the end of the Pliocene (Cappetta 1987).

Familia:  Alopiidae Bonaparte, 1838

Genus:  Alopias Rafinesque, 1810

Alopias  exigua  (Probst, 1879)

Fig. 5.13—14

1879  Oxyrhina exigua n. sp. – Probst, p. 135—137, pl. II, figs. 21,


1903  Oxyrhina exigua – Koch, p. 37, pl. II, fig. 24
1969  Alopecias exigua (Probst, 1879) – Schultz, p. 85—86,

pl. IV, figs. 52—56

background image



R e f e r r e d   m a t e r i a l : 3 anteriors, 13 lateral teeth.
One main cusp without any cusplet marks these teeth. The crown

is smooth on both sides and hangs over the root on the labial side.
The cutting edges do not reach the base of the crown.

The laterals curve distally, their mesial cutting edge is convex and

the distal one is concave. The mesial one has a remarkable sinuous
curvature, which is well developed on the upper laterals (Fig. 5.14).

The species was described by Probst (1879). The holotype is

slightly broken, but Leriche (1910) gave a detailed description of
this form and his figures are compatible with the Ipolytarnóc teeth.

The genus is known from the Early Eocene; the A. exigua was

present from the Early Oligocene to the Middle Miocene (Cappetta
1987). Three species live nowadays from which A. superciliosus
(Lowe, 1839) resembles the fossil teeth. It has a wide occurrence,
inhabits coastal waters in the shallow region but can often be found

Fig. 5. 1—3 – Carcharoides catticus: 1 – lateral (IT-98), lin (a), mes (b), lab (c); 2 – anterior (IT-98) lin (a), lab (b); 3 – lateral (IT-M16-3)
lab (a), lin (b). 4—6 – Isurus desori: 4 – second anterior (IT-III-134) from juvenile specimens, lin (a), mes (b) and lab (c); 5 – second ante-
rior from adult specimen (MÁFI-V4813), lab (a), mes (b) and lin (c); 6 – posterior (IT-8). 7—8  – Isurus hastalis: 7 – first lateral (MÁFI-
V14928), lab; 8 – posterior (MÁFI-V1616). 9  – Isurus retroflexus:  anterior (MÁFI-V14928), lab (a), mes (b), lin (c). 10 – Carcharocles
sp: lateral (?) (MTM-V61-342). 11—12 – Parotodus benedeni: 11 – second anterior (MÁFI-V14946) and 12 – posterior (MÁFI-V14940),
lin (a), mes (b) lab (c). 13—14 – Alopias exigua: 13 – first lateral (IT-118), lin (a) lab (b); 14 – lateral (IT-87), lin (a), mes (b) lab (c). (The
small scale bar (10 mm) for Fig. 7.)

in the open ocean. This shark has a very long caudal fin thus its
maximum size is 4—4.5 meters (Compagno 1984).

Ordo: Carcharhiniformes Compagno, 1973

Familia:  Scyliorhinidae Gill, 1862

Genus:  Scyliorhinus Blainville, 1816

?Scyliorhinus sp.

Fig. 6.1

R e f e r r e d   m a t e r i a l : 1 tooth.
One broken and worn tooth is assigned to this genus (H: 6;


~4.5). The crown is erect and its cutting edges are complete; it

curves lingually and its tip recurves labially. Beside the main cusp

background image



it used to have one pair of cusplets, from which one is missing. The
root shows a strongly developed torus.

One of the most similar species to this tooth is the S. distans,

which was reported from the Miocene Bavarian Molasse Basin
(Probst 1879; Barthelt et al. 1991). The tooth also resembles other
genera such as Premontreia (Oxyscyllium) that is known from the
Paleocene—Eocene (Cappetta 1992; Noubhani & Cappetta 1997)
till the Pliocene (Cappetta & Cavallo, in print) and also shows
strong similarities to the Oligocene-Miocene genus Pachyscyllium
(Reinecke et al. 2005).

Finally the tooth was named Scyliorhinus because this is the

closest scyliorhinid shark from the Miocene Paratethys, but due to
the incompleteness and the similarity to other genera, the name was
signed with a question mark. If more and better preserved teeth
turn up it would be worth discussing this group further.

The catsharks are known from the Late Jurassic. Many fossils

have been described so far (Cappetta 1987). The extant ones count
160 species in 16 genera. The genus Scyliorhinus itself contains 15
species from which the S. canicula (Linnaeus, 1758) is the most
common in the European seas. This shark is a bottom-dweller, it
equally inhabits on pebbly, sandy and muddy bottom surfaces. It
commonly occurs from the nearshore to 110 meters depth. Its
maximum size is 1 meter (Compagno et al. 2005).

Familia:  Hemigaleidae Hasse, 1879

Genus:  Paragaleus Budker, 1935

?Paragaleus sp.

Fig. 6.2—4

R e f e r r e d   m a t e r i a l : 8 anterolateral teeth.
All the teeth are broken and most of them quite worn thus closer

classification is not possible.

In the future they might be resorted to another group. The main

feature of these teeth is the distally curved main cusp that is flat on
the labial and convex on the lingual side. The mesial cutting edge
runs along the mesial root lobe and forms a smooth enamel shoul-
der. On the distal root lobe small lateral cusplets can be observed
(Fig. 6.2) gradually decreasing in size (note: this is eroded from
tooth Fig. 6.2). The base line of the root runs horizontally and
bears a strong torus with deep nutritive groove.

There is one tooth (Fig. 6.4), already reported by Koch (1903)

as Galeocerdo cf. gibberulus and it resembles these teeth, howev-
er, it is bigger (H: 9 mm; W: 

~9 mm) and its torus is more promi-

nent. Till similar finds do not appear this tooth is assigned to this
group as well.

The genus turned up in the Lower Miocene of Europe (Cappetta

1984) and in North-America (Purdy et al. 2001). At present four
species are known, of which the P. pectoralis (Garman, 1906) is
the better studied. This shark inhabits the shallower region (max.
100 m) of the tropical, warm-temperate waters. Its maximum size
is 1.2—1.3 meters (Compagno et al. 2005).

Genus:  Hemipristis Agassiz, 1843

Hemipristis  serra Agassiz, 1843

Fig. 6.5—6

1843  Hemipristis  serra  n. sp. – Agassiz, p. 237, pl. 27, figs. 18—30
1903  Hemipristis  serra, Ag. – Koch, p. 30—31, pl. I, fig. 8
1952  Hemipristis serra Ag. – Hano & Seneš, p. 368—369,

pl. LVIII, figs. 7—8 & LIX, figs. 1—3

1969  Hemipristis serra Agassiz, 1843 – Schultz, p. 90, pl. 4, figs. 66—74
1971  Hemipristis serra L. Agassiz 1843 – Brzobohatý & Schultz,

p. 725—726, pl. 4, fig. 7

1995  Hemipristis serra Agassiz, 1843 – Holec et al., p. 45—46, pl. XVI,

figs. 1—4 & pl. XVII, figs. 1—3

R e f e r r e d   m a t e r i a l : 2 anterior, 14 lateral teeth.
This species has a strong dignathic heterodonty. Two character-

istic tooth types can be distinguished. The first is awl-like with
lingual curvatures and with cutting edge that runs only to one third
of the crown. Teeth of these types are the upper and lower symphy-
sials and the lower anteriors and the first two lower laterals. On
these latter ones small lateral denticles can be observed (Fig. 6.5).

The second type has a rather broad, flattened crown with strong

serration on its cutting edge, which gradually increases towards the
tip but does not reach it. This form corresponds to the upper ante-
riors and upper laterals (Fig. 6.6). In the lower jaw the dentition
changes gradually into this type from the previous one. The laterals
curve distally; their mesial cutting edge is convex, the distal one is
concave or straight.

Both types have a strong torus, marked with a long groove. The

base of the roots become nearly horizontal on the upper laterals,
unlike in the lower ones.

The genus is known from the Middle Eocene. The remains of H.

serra occur all over the world in Miocene marine sediments (Cap-
petta 1987). The extant species H. elongata (Klunzzinger 1871)
lives in tropical, shallow, near-shore waters (1—30 m). Its maxi-
mum size is 2.3—2.4 meters (Compagno 1984).

Familia: Carcharhinidae Jordan & Evermann, 1896

Genus:  Carcharhinus  Blainville, 1816

The most common feature of this genus is the dignathic hetero-

donty. The dentition is composed of lower and upper medials (maybe
alternals), usually lower symphysial, upper anteriors, upper latero-
posteriors and lower anteroposteriors (Purdy et al. 2001). The
different species have very similar lower dentitions, thus they can
be distinguished mostly by their upper teeth.

The remains of this genus are the most abundant at Ipolytarnóc

and a total of 163 teeth were examined.

Carcharhinus  priscus (Agassiz, 1843)

Fig. 6.7—12

1843  Sphyrna prisca n. sp. – Agassiz, p. 234—235, pl. 26a,

figs. 44, 47

1903  Galeocerdo minor Ag. – Koch, p. 29—30, pl. I, fig. 6a—c
1903  Carcharias  (Aprionodon)  stellatus Probst – Koch, p. 31, pl. I,

fig. 10

1952  Sphyrna prisca Ag. – Hano & Seneš, p. 339, pl. LX, figs. 1—14
1969  Carcharhinus  (Hypoprion)  acanthodon  (Le Hon 1871) –

Schultz, p. 88, pl. 4, figs. 77—81

1971  Sphyrna prisca Ag. – Brzobohatý & Schultz, p. 724, pl. 5, fig. 7
1995  Carcharhinus priscus (Agassiz, 1843) – Holec et al., p. 46,

pl. XVIII, figs. 1—2

1995  Carcharhinus similis (Probst, 1878) – Holec et al., p. 46—47,

pl. XVIII, figs. 3—4

R e f e r r e d   m a t e r i a l : 1 medial, 5 anterior, 128 lateroposteri-

or and 29 lower anteroposterior teeth.

The crown of each upper tooth has a triangular shape. The ante-

riors are erect and narrow, while the lateroposteriors curve distally
and their roots are elongated horizontally. The cutting edge could

background image



be smooth or slightly serrated, which gradually disappears towards
the tip. The enamel runs to the margin of the root in the both
directions (mesial-distal) and it is strongly serrated. The transition
towards the crown is more continuous on the mesial side, while
distally it has a strong notch.

Most of the teeth are lateroposteriors; their height varies be-

tween 6—10 mm and their width between 6.5—13 mm. One small
upper medial tooth (Fig. 6.7) and at least five anteriors (Fig. 6.8—9)
were distinguished.

The lower teeth are simpler. They have one single narrow cusp

that could curve slightly distally. The enamel is elongated on the
labial side and on some teeth extends upwards and forms a smooth
enamel shoulder. The root is projected mesiodistally and runs hor-
izontally. Their size is similar to the upper ones.

Koch (1903) distinguished between the upper and lower teeth

and described the upper teeth as Galeocerdo minor, the lower ones
as Carcharias (Aprionodon) stellatus.

There are two very similar species in the Miocene. Names of

both species are in common use. One, originating from Agassiz
(1833—43), is Sphyrna prisca, which has upper teeth similar to our
upper teeth. The other named Galeocerdo acanthodon derives from
Le Hon (1871). It has a lower tooth with straight crown and serrat-
ed enamel shoulder.

Lack of this latter feature on the examined Ipolytarnóc lower

teeth suggests that these correspond to Agassiz’s species, and thus
they are described here as Carcharhinus priscus.

The genus is known from the Middle Eocene. The species ap-

peared first in the Oligocene then it was widespread in the Miocene
(Cappetta 1987). Carcharhinus is flourishing at present and it
includes 31 different recent species (Compagno et al. 2005). Three
of them – C. brachyurus (Günther, 1870), C. perezi (Poey, 1876)
and C. melanopterus (Quoy et Gaimard, 1824) – bear close re-
semblance to the Ipolytarnóc species. The first one is related to the
fossil species by many authors (e.g. Kemp 1991). It inhabits warm-

Fig. 6.  1 – ?Scyliorhinus sp.: anteroposterior (IT-M19—8), lab (a), mes (b), lin (c), (scale bar: 5 mm). 2—4 – ?Paragaleus sp.: anterolaterals
2 – lin (a), lab (b) (IT-V-6); 3 – lab (a), lin (b) (IT-II-36); 4 – lab (a), lin (b) (MÁFI-V14906). 5—6 – Hemipristis serra: 5 – first lateral
(MÁFI-V14939), lab (a) lin (b); 6  – lateral (MÁFI-V14911), lab. 7—12  –  Carcharhinus priscus: 7 – medial (IT-M16—4); 8—9  – anterior
(IT-100 and IT-II-70); 10  – lateroposterior (IT-119); 11—12  – anteroposteriors (MÁFI-V1623 and IT-III-62). 13—14  –  Galeocerdo adun-
cus: 13  – medial (IT-III-23), lab (a), lin (b); 14  – anteroposterior (MÁFI-V14905), lin (a), lab (b). 15—17  –  Galeocerdo contortus:
15  – anteroposterior (IT-35); 16  – anterolateral (MÁFI-V14905); 17  – symphysial (MÁFI-V14907), lin (a), mes (b). 18 –  Sphyrna  cf.
zygaena: lateral (MÁFI-V14934), lin (a), mes (b), lab (c).  (5 mm scale for Fig. 1.)

background image



temperate waters, close to the coastline. Its maximum size is 2.8—2.9
meters (Compagno 1984).

Genus:  Galeocerdo  Müller et Henle, 1837

The upper and lower dentitions of the tiger sharks are very similar.

The medials and the lower symphysial tooth differ from the antero-
posterior teeth (monognathic heterodonty). The size of the teeth de-
crease gradually in both anteroposterior series and they become wider
and lower towards the corner of the jaw (Compagno 1984).

Galeocerdo  aduncus Agassiz, 1843

Fig. 6.13—14

1843  Galeocerdo aduncus n. sp. – Agassiz, p. 231, pl. 26,

figs. 25—28

1903  Galeocerdo  cfr.  aduncus, Ag. – Koch, p. 28—29, pl. I, fig. 4
1903  Galeocerdo latidens, Ag. – Koch, p. 29, pl. I, fig. 5
1952  Galeocerdo aduncus Ag. – Hano & Seneš, p. 338, pl. LVII,

figs. 7—8 & LVIII figs. 1, 2—5

1969  Galeocerdo aduncus Agassiz 1843 – Schultz, p. 89, pl. 4,

figs. 59—65

1971  Galeocerdo aduncus L. Agassiz, 1843 – Brzobohatý & Schultz,

p. 724, pl. 5, figs. 1—6

1995  Galeocerdo aduncus Agassiz, 1843 – Holec et al., p. 47—48,

pl. XIX, figs. 1—5

R e f e r r e d   m a t e r i a l : 1 medial, 7 anteroposterior teeth.
Most of the teeth are anteroposteriors (Fig. 6.14), characterized

by distally curved, serrated main cusp with an elongated convex
mesial cutting edge. The main cusp is separated from a distal enam-
el shoulder by a deep notch and its serration decreases distally. In
basal view the root lobes recurve slightly lingually. One medial
tooth was found (Fig. 6.13), which shows a less curved cusp and
has straight mesial cutting edge.

This species is known from the Early Oligocene and was wide-

spread in the Miocene. Some remains occur in the Pliocene beds of
Japan as well (Cappetta 1987).

Purdy et al. (2001) supposed that it resembled to the extant G.

cuvier (Peron et LeSueur, 1822). The main difference is that the
recent one has pointed, compound serration on the mesial cutting
edge instead of simple pointed serration. This feature cannot be
observed on the Ipolytarnóc teeth and the medial tooth obviously
differs from the extant species, thus these teeth were described as
G. aduncus.

Galeocerdo cf. contortus Gibbes, 1848—1849

Fig. 6.15—17

1903  Galeocerdo minor Ag. – Koch, p. 29—30, pl. I, fig. 6d—f
2001  Galeocerdo contortus Gibbes, 1948—1949 – Purdy et al.,

p. 146—147, text-fig. 50

R e f e r r e d   m a t e r i a l : 1 symphysial, 2 anteroposterior teeth.
The crown of this species is more elongated; the mesial cutting

edge is sinuous and the serration of the distal enamel shoulder is faint
(Fig. 6.15). Another important feature is the thick root with very
strong torus (e.g. Fig. 6.16—17). One lower symphysial (Fig. 6.17)
was distinguished, which has a straight mesial cutting edge.

The remains of G. contortus mainly occur in the Miocene of North-

America (Cappetta 1987). Its dentition was reconstructed by Purdy et
al. (2001). After studying the Slovak (Mučín) Miocene material some
teeth were found there as well that clearly belong to this species.

The genus Galeocerdo is known from the Early Eocene (Cap-

petta 1987). One cosmopolitan species lives nowadays, the  G.
cuvier, which occurs from tropical to temperate waters and from
the surface to a depth of 140 meters. Its maximum size is 4—4.5
meters (Compagno 1984).

Familia:  Sphyrnidae Gill, 1872

Genus:  Sphyrna Rafinesque, 1810

Sphyrna  cf.  zygaena  (Linnaeus, 1758)

Fig. 6.18

1903  Carcharias  (Scoliodon) Krausi, Probst? – Koch, p. 32, pl. I,

fig. 11

R e f e r r e d   m a t e r i a l : 1 lateral tooth.
One tooth belongs to this species. The base of its crown is wide;

the tip curves distally; its cutting edges are smooth; the mesial one
is convex, while the distal one is almost perpendicular to the root
line. After a deep notch, the convex, smooth enamel shoulder fol-
lows the main cusp. The root is massive; the lobes run horizontally
and between them a deep basal nutritive groove can be observed.

The hammerhead sharks are known from the Early Miocene of

Europe and Asia (Cappetta 1987), moreover Purdy et al. (2001)
reported three species from the North-American Early Miocene
that are identified as certain extant species.

There are seven extant species, from which the Ipolytarnóc tooth

best resembles the S. zygaena (Linnaeus, 1758). The incomplete
preservation of the tooth allows its description as S. cf. zygaena.
This species inhabits tropical and temperate waters and it is fre-
quent both in the near-shore and pelagic environments. It prefera-
bly lives close to the water surface in an average depth of 20
meters. Its maximum size is 3.7—4 meters (Compagno et al. 2005).


Numerous Lower Miocene selachian remains were

found at Ipolytarnóc, in Hungary. In addition to the shark
teeth, also shark vertebra and, owing to the screen-wash-
ing technique, other Chondrichthyes groups such as rays
(Dasyatis and Aetobatus) turned up at the site. The well
preserved shark teeth were identified properly and classi-
fied at specific taxonomical level and the results of the
classification suggest that the fauna is highly diverse.

Most of the teeth, about 63 %, belong to the Carchar-

hinidae and Odontaspididae. Both families are widespread
in warm-temperate and tropical waters, which mostly ap-
plies to the rest of the fauna as well. However, there are
also taxa with rather warm-temperate and boreal distribu-
tion (e.g. Squalus).

The habitat of the species is widely varying. The two

most frequent families are characterized by shallow-marine,
near-shore habitat (except Odontaspis). Another typical ner-
itic, shallow water shark is the Hemipristis. The third most
common group, the Lamnidae (11 %) are rather pelagic
sharks also like other forms: Carcharocles,  Alopias  and
Sphyrna. There are sharks that live near the continental
slope at the outer shelf in deeper water such as Mitsukurina
and  Odontaspis and some of the sharks have typical bathyal

background image



habitat like Isistius and Centrophorus. In addition, some
genera are specially bottom-dwellers (e.g. Squatina).

Most of the species already appeared in the Oligocene

and became major elements of the Miocene faunas. Except
the  Parotodus and the Carcharoides, all genera have re-
cent representatives and the majority closely resemble the
recent species.

Very similar Lower Miocene faunas were described from

the Paratethys: the Swiss Molasse Basin (Leriche
1927a,b), the Bavarian Molasse Basin (Probst 1878, 1879;
Barthelt et al. 1991), Linz (Schultz 1969) and many Egg-
enburgian localities in Austria (Brzobohatý & Schultz
1971), Rapovce (Hano & Seneš 1952) and Mučín (Holec
et al. 1995) in Slovakia.

The composition of the Ipolytarnóc shark fauna and

comparison with the other faunas suggests that the Parat-
ethys (Fig. 7) was a warm-temperate to subtropical sea,
with direct tropical connections in the Lower Miocene
(Brzobohatý & Schultz 1971). The Paratethys could have
been oriented towards the Mediterranean, upheld by the
similar Lower Miocene fauna of Montpelier region (Cap-
petta 1970) and towards to the Indo-Pacific supported by
the presence of Hemipristis, which lives nowadays in the
Indian Ocean. The connection of these areas is generally
accepted (Rögl 1998).

During this time there could be still large, connected

open water surfaces, with deeper sea basin, which is indi-
cated by the appearance of the Isistius and Mitsukurina.
The remains of these genera are not known from younger
Miocene deposits of the Central Paratethys. In contrast,
the two most abundant genera, Carcharias and Carchar-
hinus, remained major elements of the late Early-Middle
Miocene shark faunas.


The fauna described more than 100 years ago was re-

vised and completed with new finds. The result shows a

very diverse Lower Miocene shark community that in-
cludes 19 genera with 16 certain species: Notorynchus
primigenius, Squalus sp., Centrophorus  sp., Isistius cf. tri-
angulus, Squatina sp., Odontaspis sp. 1 & 2, Carcharias
acutissima, Carcharias cuspidatus, Mitsukurina lineata,
Carcharoides catticus, Isurus desori, Isurus hastalis, Isu-
rus retroflexus, Carcharocles sp.,  Parotodus benedeni,
Alopias exigua,  ?Scyliorhinus  sp.,  ?Paragaleus sp., Hemi-
pristis serra, Carcharhinus priscus, Galeocerdo aduncus,
Galeocerdo contortus, Sphyrna cf. zygaena.

This fauna represents warm-temperate water, a subtropical

climate with wide habitation range of the Chondrichthyes.
The North Alpine Foreland Basin and the Central Paratethys
was directly connected in the Early Miocene (see Rögl 1998)
as shown by their identical selachian assemblages.

It should be noted that during fieldwork, a number of other

remains like vertebra fragments of fish, bony fish teeth, scales
and otoliths were also found, which all await a detailed
study. Their examination is expected to complete the knowl-
edge of the Lower Miocene fish fauna of the Paratethys.

Acknowledgments: I would like to thank László Kordos,
the head of the Hungarian Geological Institution and Imre
Szarvas the leader of the National Park of Ipolytarnóc for al-
lowing the fieldworks at Ipolytarnóc and the enthusiastic
teams, who participated in the summer camps. Many thanks
go to the staff of the collections where I had the chance to
work, and I especially thank Miroslav Hornáček for his kind
permission to study his private collection from the Slovak
Lower Miocene. I am also grateful to Henri Cappetta for his
helpful critical reviews.


Agassiz L. 1833—43: Recherches sur les Poissons Fossiles, Tome III

– Atlas. Neuchâtel 1—432, 1—83 Table.

Applegate S.P. 1965: A confirmation of the validity of Notorhynchus

pectinatus; the second record of this Upper Cretaceous Cow-
shark. Bull. Southern California Acad. Sci. 64, 3, 122—126.

Fig. 7. Lower Miocene paleogeog-
raphy (after Rögl 1998 modified at
Rhine Graben after Kuhlemann &
Kempf 2002). The shark teeth local-
ities from west to east: Montpelier
region, Swiss Molasse; Bavarian
Molasse; Austria; Ipolytarnóc and
Southern Slovakia.

background image



Barthelt D., Fejfar O., Pfeil H.F. & Unger E. 1991: Notizen zu

einem Profil der Selachier-Fundstelle Walbertsweiler im Bere-
ich der miozänen Oberen Meeresmolasse Süddeutschlands.
Münchener Geowiss. Abh. (A) 19, 195—208.

Bartkó L. 1985: Geology of Ipolytarnóc. Geol. Hung., a series

Palaeontologica 44, 1—71.

Bass A.J., D’Aubrey J.D. & Kistnasamy N. 1973: Sharks of the East

Coast of Southern Africa: The genus Carcharhinus (Carchar-
hinidae).  Investigational Report, Oceanographical Res. Inst.
33, 1—68.

Báldi T. 1983: Oligocene and Lower Miocene formations of Hun-

gary.  Akadémiai Kiadó, Budapest, 1—293 (in Hungarian).

Berggren W.A., Kent D.V., Swisher C.C. & Aubry M.-P. 1995: A re-

vised Cenozoic geochronology and chronostratigraphy. In:
Berggren W.A., Kent D.V., Aubry M.-P. & Hardenpol. J.
(Eds.): Geochronology, time scales and global stratigraphic cor-
relation. Soc. Sed. Geol., Spec. Publ., Tulsa Okla 54, 129—212.

Bourdon J. 2003: The life and times of long dead sharks.
        http : //
Brzobohatý R. & Schultz O. 1971: Die Fischfauna der Eggenburger

Schichtengruppe. In: Steininger F. & Seneš J. et al. (Eds.):
Chronostratigraphie und neostratotypen. Miozän der Zentralen
Paratethys. Bd. II., M1 Eggenburgien. Vydavate stvo Sloven-
skej Akadémie Vied, Bratislava, 719—759.

Cappetta H. 1970: Les sélaciens du Miocčne de la région de Mont-

pellier. Palaeovertebrata, Mém. Extr. 1970, 139.

Cappetta H. 1987: Chondrichthyes II. (Mesozoic and Cenozoic

Elasmobranchii) Handbook of Paleoichthyology vol. 3B.
Gustav Fischer Verlag, Stuttgart, New York, 1—193.

Cappetta H. 1992: Carcharhiniformes nouveaux (Chondrichthyes,

Neoselachii) de l’Yprésien du Bassin de Paris. Geobios 25, 5,

Cappetta H. & Cavallo O. (in print): Les sélaciens du Pliocčne de la

région d’Alba (Piémont, Italie Nord-Ouest). Riv. Piemontese
di Storia Naturale 27, 261—304.

Compagno L.J.V. 1984: FAO Species Catalogue, Volume 4: Sharks

of the World. United Nations Development Programme, Rome

Compagno L.J.V., Dando M. & Fowler S. 2005: Sharks of the

World, Collins Field Guide. Harper Collins Publishers, Lon-
don, 1—368.

Császár G. (Ed.) 1997: Basic Litostratigraphic units of Hungary.

MÁFI, Budapest, 1—114.

Cunningham B.S. 2000: Tooth study of a recent sand tiger shark,

Carcharias taurus (Rafinesque, 1810). In: Bourdon J. (Ed.): The
life and times of long dead sharks.

Hably L. 1985: Early Miocene plant fossils from Ipolytarnóc, N

Hungary.  Geol. Hung., Ser. Palaeontologica, 45, 73—255.

Hano V. & Seneš J. 1952: Lower Miocene fauna from Rapovce.

Geol. Sborn. Slovenská Akadémia III., Bratislava 3—4, 315—362
(in Slovak).

Holec P., Hornáček M. & Sýkora M. 1995: Lower Miocene shark

(Chondrichthyes, Elasmobranchii) and whale faunas (Mamma-
lia, Cetacea) near Mučín, Southern Slovakia. Geol. Práce, Spr.
100, 37—52.

International Commission on Zoological Nomenclature [ICZN]

1999: International Code of Zoological Nomenclature, 4



International Trust for Zoological Nomenclature.  Natur. Hist.
Mus.,  London, 1—306.

Kemp R.N. 1991: Chondrichthyans in the Cretaceaus and Tertiary

of Australia. In: Vickers-Rich P., Monaghan J.M., Baird R.F.
& Rich T.H. (Eds.): Vertebrata palaeontology of Australia Ch.
15.  Monash Univ. Publ., Melbourne, 498—568.

Kent B.W. 1994: Fossil sharks of the Chesapeake Bay region. Egan

Rees and Boyer, Inc., Columbia, 1—146.

Koch A. 1903: New shark teeth rich beds in Tarnócz Nógrád dis-

trict. Földt. Közl. 33, 22—44 (in Hungarian).

Koch A. 1904: Supplement for the shark fauna of Lower Miocene sand-

stone at Ipolytarnóc. Földt. Közl. 34, 202—203 (in Hungarian).

Kordos L. 1985: Footprints in Lower Miocene sandstone at Ipoly-

tarnóc, N Hungary. Geol. Hung., Ser. Palaeontologica 46,

Kordos L. & Solt P. 1984: Scheme of the Hungarian marine verte-

brate  fauna levels. MÁFI Évi Jelentése 1982, Budapest, 347—351
(in Hungarian).

Kuhlemann J. & Kempf O. 2002: Post-Eocene evolution of the

North Alpine Foreland Basin and its response to Alpine tecton-
ics.  Sed. Geol. 152, 45—78.

Le Hon H. 1871: Préliminaires d’un Mémoire sur les Poissons Ter-

tiaires de Belgique. Bruxelles, 1—15.

Leriche M. 1910: Les Poissons oligocenes de la Belgique. Mém.

Mus. Royal Hist. Natur. Belgique 5, 229—363.

Leriche M. 1927a: Les Poissons de la Molasse Suisse I. Mém. Soc.

Paléontologique Suisse 46, 1—56.

Leriche M. 1927b: Les Poissons de la Molasse Suisse II. Mém. Soc.

Paléontologique Suisse 47, 57—120.

Noubhani A. & Cappetta H. 1997: Les Orectolobiformes, Carchar-

hiniformes et Myliobatiformes des Bassins 

à phosphate du Mo-

roc (Maastrichtien-Lutétien basal). PalaeoIchthyologica 8, 327.

Pálfy J., Mundil R., Renne R.P., Bernor L.R, Kordos L. & Gas-

parik M. 2006: Radioisotopic dating of the Ipolytarnóc fossil
track site and its implications for the Proboscidean Datum.
Hantkeniana 5, 100.

Philippi R.A. 1851: Tornatella abbreviata,  Otodus mitis,  Otodus

catticus, und Myliobatis testae.  Palaeontographica 1, 23—25.

Probst J. 1878: Beiträge zur Kenntnis der fossilen Fische aus der

Molasse von Baltringen, Hayfische. Jhreshefte Vereins für vat.
Naturkunde Württemberg 34, 113—154.

Probst J. 1879: Beiträge zur Kenntniss der fossilen Fische aus der

Molasse von Baltringen. Jahreshefte Vereins für vat. Naturkunde
Württemberg 35, 127—191.

Purdy W.R., Schneider P.V., Applegate P.S., Mclellan H.J., Meyer

L.R. & Slaughter H.B. 2001: The Neogene sharks, rays, and
bony fishes from Lee Creek Mine, Aurora, North Carolina.
Smithsonian Contributions to Paleobiology 90, 71—202.

Reinecke T., Stapf H. & Raisch M. 2001: Die Selachier und Chimären

des Unteren Meeressandes und Schleichsandes im Mainzer Beck-
en (Rupelium, Unteres Oligozän). Palaeontos 1, 1—73.

Reinecke T., Moths H., Grant A. & Breitkreuz H. 2005: Die Elasmo-

branchier des norddeutschen Chattiums, insbesondere des Stern-
berger Gesteins (Eochattium, Oligozän). Palaeontos 8, 1—135.

Rögl F. 1998: Palaeogeographic considerations for the Mediterra-

nean and Paratethys seaways (Oligocene to Miocene). Ann.
Naturhist. Mus., Wien 99 A, 279—310.

Sadowsky A.E. 1970: On the dention of the sand shark, Odontaspis

taurus, from the Vicinity of Cananeia, Brazil. Boletim do Institu-
to Oceanografico da Universidade de Sao Paulo 18, 1, 37—44.

Schultz O. 1969: Die Selachierfauna (Pisces, Elasmobranchii) aus

den Phosphoritsanden (Unter-Miozän) von Plesching bei Linz,
Oberösterreich.  Naturkund. Jb. Stadt Linz, 1968, 61—102.

Siverson M. 1999: A new large lamniform shark from the uppermost

Gearle Siltstone (Cenomanian, Late Cretaceous) of Western Aus-
tralia. Transactions Roy. Soc. Edinburgh: Earth Sci. 90, 49—66.

Taniuchi T. 1970: Variation in the teeth of sand shark, Odontaspis

taurus (Rafinesque) taken from the East China Sea. Japanese
J. Ichthyology 17, 1, 34—44.

Vitális I. 1942: Comparison study of the dentition of recent

Notidanids and the fossils Notidanus primigenius Ag., accord-
ing to Miocene teeth mainly from Mátraszöllős. Geol. Hung.,
Ser. Palaeontologica 18, 1—38 (in Hungarian).

background image



MÁFI: Hungarian Geological Institution (Magyar Állami Földtani Intézet) H-1143, Budapest, Stefánia út 106.
MTM: Hungarian Museum of Natural History, Paleontological Collection  (Magyar Természettudományi Múzeum, Őslénytár) H-1083,

Budapest, Ludovika tér 2—6.

IT: Collection of Ipolytarnóc, (Ipolytarnóci Ősmaradványok Természetvédelmi Terület) H-3138, Ipolytarnóc, Pf.:1.