background image

GEOLOGICA CARPATHICA, DECEMBER 2006, 57, 6, 447—460

www.geologicacarpathica.sk

Chemical composition of spinels from Mesozoic alkali basalts

of the Western Carpathians:  implications for sources of

detrital spinels in flysch sediments

TOMÁŠ MIKUŠ

1

, JÁN SPIŠIAK

1

, MILAN SÝKORA

and RASTISLAV DEMKO

3

1

Geological Institute Slovak Academy of Sciences, Severná 5, 974 01 Banská Bystrica, Slovak Republic;

mikus@savbb.sk;  spisiak@savbb.sk

2

Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic;  sykora@fns.uniba.sk

3

Geological Survey of Slovak Republic, Kynce ovská 10, 974 01 Banská Bystrica, Slovak Republic;  demko@gssrbb.sk

(Manuscript received October 16, 2004; accepted in revised form October 5, 2006)

Abstract: Cr-spinel is a relatively widespread accessory heavy mineral in Mesozoic alkali volcanic rocks in the Central
Western Carpathians. According to their chemical composition, spinels from these rocks (basalts, submarine
hyaloclastites) can be divided into several groups (volcanic – Cr-spinel and Fe-Ti spinel, and peridotitic spinel,
altered). Volcanic spinels crystallized in the plumbing system, and peridotitic spinels ultimately originated from
peridotitic xenoliths, entrapped and brought to the surface by magmas. Melt/silicate inclusions (clinopyroxenes,
plagioclases, melt) were found only in Cr-spinels of volcanic origin. Alteration processes are similar in all studied
samples (enrichment in Ti

4+

, Fe

2+

, Fe

3+

 and depletion in Mg

2+

 and Al

3+

) . The chemical composition of Cr-spinels from

Cretaceous alkali basalts from the Western Carpathians is different to those of detrital Cr-spinels of volcanic origin
from the Albian Poruba Flysch Formation. Mesozoic alkali volcanites were not important source for widespread
detrital spinels of volcanic origin in Cretaceous sediments (mainly in the Tatric and Fatric Tectonic Units).

Key words: Cretaceous volcanism, Cr-spinel, silicate melt inclusions, clinopyroxene, alteration.

Introduction

Spinel is an important accessory mineral of Mesozoic alkali
volcanic rocks because it is resistant to mechanical break-
down and low-grade alteration. Mantle peridotite- and vol-
canic rock-derived spinels are indicative of magmatic and
tectonic evolution and spinel chemistry is diagnostic of
melt composition, crystallization conditions and tectonic
setting. Although Cretaceous basaltic volcanites were
studied mainly from the geochemical point of view in
many previous works (e.g. Hovorka & Spišiak 1988; Spi-
šiak & Hovorka 1997; Hovorka et al. 1999), no attention
was paid to the chemical composition of spinels. There-
fore, we analysed spinels from these rocks in order to ob-
tain information about their petrogenetic nature. With the
use of discrimination criteria for spinel compositional
variations (Lenaz et al. 2000; Kamenetsky et al. 2001) ge-
netically different spinel types were distinguished. Melt
inclusions entrapped within Cr-spinels and clinopyroxene
phenocrysts were used to decipher the geochemical char-
acter of Cretaceous basaltic rocks of the Central Western
Carpathians (CWC). Clinopyroxene inclusions in Cr-spinel
were used for thermobarometric calculations. Parental melt
composition was recalculated from the association of
daughter phases and residual silicic glass composition of
melt inclusions entrapped in Cr-spinel.

Many authors have been looking for the source area of a

rather widespread detrital Cr-spinel occurring in Creta-
ceous flysch sediments (e.g. Mišík et al. 1980; Jablonský
et al. 2001). For this reason, we considered Cretaceous ba-

salts as a potential important source of flysch-hosted detri-
tal spinel. Thus we compared the composition of spinels
from Cretaceous basaltic volcanites with that of detrital
spinels from siliciclastic flysch sediments of the Tatric and
Fatric Tectonic Units.

Geology and tectonic settings

Mesozoic (Lower Cretaceous) alkali rocks of various

types occur in the External (EWC) and Central Western
Carpathians (CWC). In the CWC, Mesozoic alkaline vol-
canism is known from the Tatric (envelope) and Fatric Su-
perunits (Krížna, Manín and Klape Units, Plašienka 1999).
On the basis of stratigraphic data, the age of the volcanics
under consideration is Barremian—Aptian, which is proved
also by the K/Ar method applied to hornblende and cli-
nopyroxene concentrate, and the whole rock (102 Ma,
Spišiak & Balogh 2002). The K/Ar method applied to
hornblende and clinopyroxene concentrate and the whole
rock proved the Aptian—Albian age (116 ± 6.5 and
106.2 ± 1.7 Ma) of volcanic activity in the Krížna Nappe
(Bujnovský et al. 1981). The products of the volcanic ac-
tivity are low differentiated basalts/basanites, or very rare-
ly picrites. Volcaniclastic rocks are present in substantial
amounts (hyaloclastites, etc.). The majority of Mesozoic
alkaline rocks (except for picrites) are characterized by the
presence of a fine-grained devitrified matrix (up to
40 vol. %). Olivines are completely replaced by chlorite-
serpentine-carbonate aggregates. Clinopyroxenes are dom-

background image

448

MIKUŠ, SPIŠIAK, SÝKORA and DEMKO

inating minerals in all rock types. Besides phenocrysts of
various shape and size, they also form microlites in the de-
vitrified matrix. Kearsutite, albite, apatite, analcime,
pseudoleucite, spinel, ore minerals, and Ti-biotite are rarely
present (Spišiak & Hovorka 1997). Based on alkali charac-
ter of volcanics, Cretaceous volcanism of CWC as well as
EWC is associated with short-living rifting (Hovorka & Spi-
šiak 1988). The studied rock types are represented mostly
by hyaloclastites and autometamorphosed basalts.

In this contribution we studied Cr-spinels and clinopy-

roxene phenocrysts from the following localities in the
CWC: Podmanín, Košeca, Dobrá, Slopná, Štepnica, Oso-
bitá and Čebra  (Fig. 1). A majority of the studied locali-
ties are situated in the Strážovské vrchy Mts (Podmanín,
Slopná, Dobrá and Košeca). The Štepnica locality is situ-
ated in the Javorníky Mts, Čebra  belongs to the Chočské
vrchy Mts, and Osobitá is located in the Tatry Mts. Hyalo-
clastite bodies in Podmanín and Slopná belong to the
Manín Tectonic Unit. The surrounding rocks are Lower
Albian cherty limestones of the Jelenia skala Formation
and thin-rhythmic flysch sediments of the Praznov Forma-
tion (Cenomanian—Middle Turonian). The stratigraphic
age of the hyaloclastite body is Early Albian (Mello et al.
2005). The basalt body near Dobrá is situated between or-
ganodetrital limestones with interbeds of cherts (Baremi-
an—Lower Aptian) and patchy marls with foraminifers of
Late Albian—Early  Cenomanian age. This sedimentary se-
quence with the volcanic body belongs to the Fatric Supe-

runit (Krížna Nappe). The stratigraphic age of the volcanic
rock is probably Early  Albian. Another Fatric basalt hy-
aloclastite body is situated near Košeca. The surrounding
rocks are marly limestone of Late Jurrasic—Early Creta-
ceous age. The hyaloclastite contains clasts of Hauterivian
and Barremian limestones. The assumed age of the vol-
canism is probably Albian. Volcanics in Čebra  (Krížna
Nappe) are represented by basaltic breccias and massive
autometamorphosed basalts. The sedimentary sequence
and the age of the volcanic rock are similar to those of
the Košeca locality. The hyaloclastite body in Štepnica
is embedded in marls of the Púchov Formation (Lower
Albian—Lower Campanian). This formation is part of
the Pieniny Klippen Belt and belongs to the Czorsztyn
Tectonic Unit, Púchov – Jarmuta Group (Mello et al.
2005). Several hyaloclastite bodies in Osobitá are situat-
ed in Tithonian Sobótka Limestones (Lefeld 1985). Super-
incumbent beds of volcanites are found in the Osobitá
chert limestones (Valanginian—Aptian). This rock se-
quence belongs to the Tatric Tectonic Unit.

Petrographic description

The size of spinel grains (octahedral crystals and frag-

ments) is in average about 0.3—0.5 mm. Spinel phenoc-
rysts are of black colour. They are clearly homogeneous
in the reflected light. Cr-spinels of volcanic origin (see

Fig. 1. Geological position of the studied localities in the simplified geological map of the Western Carpathians. Localities studied: 1 – Dobrá,
2 – Košeca, 3 – Štepnica, 4 – Slopná, 5 – Podmanín, 6 – Čebra , 7 – Osobitá.

background image

449

CHEMICAL COMPOSITION OF SPINELS FROM BASALTS OF THE WESTERN CARPATHIANS

spinel  composition)  from  Podmanín  and  Čebra   have
very  similar  characteristic  features:  a  –  oscillatory  zoning
(Fig. 2a);  b  –  silicate/melt  inclusions  (Fig. 2b,c).

Silicate  and  melt  inclusions  trapped  in  spinel  were

found  only  in  volcanic  Cr-spinel  from Podmanín  and  Če-
bra .  The  shape  of  the  inclusions  is  dominantly  convex
oval  and  their  size  is  up  to  40  m.  The  inclusions  with
cracks  are  altered  and  filled  with  secondary  chlorite  and
calcite  (Fig. 2b).  Most  of  the  inclusions  contain  two  phas-
es:  daughter  clinopyroxene  (cpx) + plagioclase  (Fig. 2b)
or  daughter  cpx  crystal + glass + shrinkage  vapour  bubble

(Fig. 2c).  Single-phase  inclusions  contain  cpx  or  glass.
Clinopyroxene  inclusions  in  Cr-spinel  host  were  ob-
served  as  single  individual  euhedral  crystals,  usually  oc-
curring  along  the  inclusions  contact  with  the  host  spinel.
Generally,  daughter  cpx  inclusions  are  surrounded  by  re-
sidual  glass  containing  circular  cells  which  are  most
probably  a  result  of  vapour  exsolution  from  the  en-
trapped  melt  (Fig. 2c).

Fe-Ti  spinels  are  associated  with  clinopyroxene  (cpx)

phenocrysts  and  apatite  in  the  Dobrá  and Štepnica  locali-
ties  (Fig. 2d,e,f).

Fig. 2.  a  –  Primary  magmatic  zoning  of  Cr-spinel  of  volcanic  origin  with  melt  inclusions  from  Podmanín;  b  –  Inclusion  of  plagioclase
(pl) with clinopyroxene (cpx) in Cr-spinel (sp) of volcanic origin and inclusion filled by secondary minerals (Čebra  locality); – Inclu-
sions  of  basaltic  melt  with  clinopyroxene  (cpx)  and  shrinkage  bubbles  in  volcanic  spinel  (Podmanín);  d  –  Euhedral  clinopyroxene  phe-
nocryst  with  inclusion  of  apatite  (ap)  and  Fe-Ti  spinel  (ulvöspinel-usp)  from  Dobrá  locality;  e  –  Impregnations  of  Fe-Ti  spinel  (usp)  in
clinopyroxene (cpx) grain from Štepnica; – Inclusions of apatite (ap) in Fe-Ti spinel (usp) from Štepnica. BSE images.

background image

450

MIKUŠ, SPIŠIAK, SÝKORA and DEMKO

Altered  spinels  were  recognized  among  spinels  of  vol-

canic  origin.  The  textures  of  altered  spinels  are  heteroge-
neous  (Fig. 3b,c,d)  and  porous  (Fig. 3b,d).  Enriched  rims
were  observed  very  often  (enrichment  in  TiO

2

,  Fe

2

O

3

  or

Cr

2

O

3

,  Fig. 3a).  The  strongest  changes  in  spinel  chemis-

try  due  to  the  alteration  process  were  observed  in  Košeca,
where  almost  all  the  spinel  grains  are  altered.  Alteration
affects  spinel  grains  from  their  margins  and  alteration
progresses  faster  in  spinel  grains  containing  microfrac-
tures.

Clinopyroxene  phenocrysts  were  found  in  heavy  miner-

al  fractions  from  Štepnica,  Dobrá  and  Podmanín.  The  eu-
hedral  phenocrysts  are  up  to  1.5 mm  in  size  and  are  brown
(Štepnica,  Dobrá)  or  green  (Podmanín)  in  colour.  Oscilla-
tory  zonation  is  quite  usual  in  cpx  phenocrysts  from  Štep-
nica  and  Dobrá  (Fig. 4).  Several  oscillatory  zoned  cpx
grains  consist  of  an  anhedral  homogeneous  core  with  dif-
ferent  chemical  composition  (Fe-rich  cores).  The  boundary
between  core  and  zoned  mantle  is  sharp  (Fig. 4a,b)  and  the
cores  are  magmatically  corroded.

Fig. 3.  Textures  of  altered  spinels  from  Podmanín  (a),  Košeca  (b,e),  Slopná  (c),  Dobrá  (d),  Štepnica  (f).  BSE  images.  a  –  Euhedral
Cr-spinel  grain  with  altered  rim.  b  –  Heterogeneous  Cr-spinel  with  porous  structure.  Pores  are  filled  with  secondary  minerals.  Altered
phase  is  located  around  the  pores.  c  and  d  –  Decomposition  of  heterogeneous  Cr-spinel  structure.  e  –  Almost  completely  altered
Cr-spinel grain. White phase corresponds to Cr-magnetite. f – Heterogeneous Fe-Ti spinel. Lighter phase is enriched in TiO

2

.

background image

451

CHEMICAL COMPOSITION OF SPINELS FROM BASALTS OF THE WESTERN CARPATHIANS

Analytical  methods

Spinel  and  clinopyroxene  were  hand-picked  from  10—15 kg

of  crushed  volcanic  rock  (fraction  < 2 mm).  Individual  crystals
were mounted in epoxy resin, polished and coated with carbon.

Spinel,  silicate  melt  inclusions  and  clinopyroxene  were

analysed  with  a wave-dispersion  (WDS)  electron  micro-
probe  and  photographed  in  back-scattered  electrons  (BSE)
at  the  Department  of  Mineralogy  in  the  Natural  History  Mu-
seum,  London  (UK).  The  microprobe  used  was  a Cameca
SX50  probe.  The  operating  conditions  were  as  follows:
20 kV  accelerating  voltage,  20 nA  beam  current,  beam  di-
ameter  2—5  m,  ZAF  corrections,  standards  (n  –  natural,
sy
  –  synthetic)  –  TiO

2

  (sy)  and  CaTiO

3

  (sy)  for  Ti,  V  (sy)

for  V,  wollastonite  (n)  for  Ca,  Cr

2

O

3

  (sy)  for  Cr,  Mn  (sy)  for

Mn,  hematite  (sy)  for  Fe,  Co  (sy)  for  Co,  Ni  (sy)  for  Ni,
sphalerite  (sy)  for  Zn,  corundum  (sy)  for  Al,  diopside  (n)  for
Si,  MgO

2

 (sy)  for  Mg,  jadeite  (n)  for  Na,  KBr  (sy)  for  K,  ha-

lite  (sy)  for  Cl.  A  defocused  beam  could  not  be  used  for  the
melt  inclusions  analyses  due  to  their  small  size.  The  Cpx
phenocrysts  were  analysed  with  a  Cameca  SX100  probe  at
the  Geological  Survey  of  the  Slovak  Republic  (Bratislava)
under  the  following  conditions:  15 kV  accelerating  voltage,
20 nA  beam  current,  beam  diameter  2—5  m,  ZAF  correc-
tions,  standards  (n  –  natural,  sy  –  synthetic)  –  albite  (n)
for  Na,  wollastonite  (n)  for  Si  and  Ca,  Al

2

O

3

  (sy)  for  Al,  or-

thoclase  (n)  for  K,  rodonite  (n)  for  Mn,  hematite  (n)  for  Fe,
MgO  (sy)  for  Mg,  TiO

2

  (sy)  for  Ti,  nickel  (sy)  for  Ni,

chromite (n) for Cr.

Fe

2+

  and  Fe

3+

  in  spinels  were  calculated  assuming  an  ide-

al  stoichiometry.  Fe

3+

  in  clinopyroxenes  was  calculated  ac-

cording  to  charge  balance  proposed  by  Ryburn  et  al.  (1976)
and  Papike  (1974).

Thermometric  calculation  with  a  combination  of  two

thermometers  was  used  for  clinopyroxene  inclusion  in
Cr-spinel.  A  QUILF  software  written  by  Andersen  et  al.
(1995)  was  used  for  cpx—sp  pairs.  The  results  from  QUILF
equilibrium  are  compared  with  a  single  clinopyroxene  ther-
mometer  proposed  by  Mercier  (1976).  For  pyroxene  barom-
etry  a  barometer  proposed  by  Nimis  (1995)  was  used.

Microprobe  analyses  of  residual  glass  were  normalized

to  100 %.  Modal  proportions  of  cpx  and  residual  glass
were  calculated  in  the  first  step  using  BSE  images.  It  is
not  possible  to  estimate  the  volume  of  spinel  crystallized
from  the  entrapped  melt.  Therefore  1,  3,  6  and  9 %  of
spinel  component  was  added  to  homogenized  compo-
nents  (glass+cpx).  Final  melt  composition  was  plotted  on
a  model  curve  in  the  TAS  (total  alkali  vs.  silica)  diagram.
The  estimated  primary  melt  composition  is  influenced  by
the  following  factors:

 Volumetric  phase  ratios  do  not  respect  the  third  di-

mension.

Fig. 4.  Oscillatory  zonation  of  cpx  phenocrysts.  Several  cpx  grains  contain  Fe-rich  core  with  chemical  composition  different  from  that
of  younger  zoned  cpx  (a,b).  Numbers  correspond  to  analyses  in  Table 4.

background image

452

MIKUŠ, SPIŠIAK, SÝKORA and DEMKO

 The contents of alkalis are underestimated due to a

focused electron beam used in the WDS analyses.

Results

Spinel composition

The spinels from Mesozoic alkali volcanics show a sig-

nificant variation in chemistry, mainly in terms of the
most important parameters such as Mg# (Mg/Mg + Fe

2+

),

Cr# (Cr/Cr + Al), TiO

2

 and Fe

2+

/Fe

3+

 (Table 1). These vari-

ations suggest multiple sources of the spinels. To dis-
tinguish between spinels from these sources (hereafter,
peridotitic and volcanic), the most useful variables are
TiO

2

 content with a combination of the Fe

2+

/Fe

3+

 ratio

in spinels (Lenaz et al. 2000; Kamenetsky et al. 2001).
“Mantle” spinels (from ophiolitic peridotites and mantle
xenoliths) have statistically ( > 95 %) lower TiO

2

( < 0.2 wt. %) and higher Fe

2+

/Fe

3+

 ( > 3) over the whole

interval in Al

2

O

3

 (6—56 wt. %) than volcanic spinels

(Kamenetsky et al. 2001). Volcanic spinels with
TiO

2

< 0.2 wt. % are uncommon (some suites of low-Ti

MORB, arc tholeiites and boninites) and those with
TiO

2

< 0.1  are exceptionally rare (some low-Ca boninites).

Lenaz et al. (2000) have set a compositional boundary
between the peridotitic and volcanic spinels at
TiO

2

= 0.2 wt. %. Volcanic spinels tend to have the Fe

2+

/Fe

3+

ratio usually up to four (Kamenetsky et al. 2001).

Several principal compositional groups have been dis-

tinguished according to chemical composition (Fig. 5):
1.

 mantle peridotitic spinel (Podmanín, Dobrá and Slopná

localities);  2. volcanic spinel: a – Cr-spinel (Podmanín,
Dobrá, Slopná, Košeca and Čebra  localities); b – Fe-Ti
spinel (Podmanín, Dobrá, Štepnica and Osobitá localities);
3.

 altered spinel (all localities studied).

Peridotitic spinel is characteristic of the highest Al

2

O

3

content (up to 60 wt. %, e.g. Podmanín). TiO

2

 content is

usually very low ( < 0.10 wt. %). Mg# (Mg/Mg + Fe

2+

) val-

ues are 79—81 mol % and Cr# (Cr/Cr + Al) ranges between
7 and 12 mol %. Peridotitic spinels from Dobrá show the
lowest content of Al

2

O

3

 (36—48 wt. %) in this composi-

tional group (Table 1, Fig. 6). An interesting spinel phase,
with up to 50 wt. % Cr

2

O

3, 

was recognized as tiny inclu-

sions (up to 10 µm) within Cr-diopside phenocrysts from
Podmanín.

Among volcanic spinels, those from Podmanín and Če-

bra  show very similar chemical compositions.  Al

2

O

3

 con-

tent ranges from 24 to 39 wt. % and TiO

content is

between 0.9 and 1.1 wt. %. Mg# values range between 71
and 74 mol % and Cr# values correspond to 28—35 mol %
(Table 1). Oscillatory zoning of volcanic Cr-spinels from
Podmanín and Čebra  is caused by different content of
trivalent cations (Al

3+

, Cr

3+

) in individual zones. Au-

tometamorphosed basalt from Čebra  contains only volca-
nic Cr-spinel, which contains the highest TiO

content (up

to 1.84 wt. %).

Fe-Ti spinels (titanomagnetites) have been found in

Podmanín, Dobra, Štepnica and Osobitá (Table 2). The

major constituent is magnetite. The amount of the ul-
vöspinel (usp) component is between 8 and 38 mol %. Al-
most all studied samples of Fe-Ti spinels show Al

2

O

3

content about 3 wt. % in average. A complete chromian
spinel—titanomagnetite (Fe-Ti spinel) solid solution has
not been observed.

Detrital Cr-spinels of volcanic origin from the Poruba fly-

sch Fm in general are different in terms of Al

2

O

3

 content,

Mg# and Cr# to those of alkali basalts. Detrital Cr-spinels
have lower Al

2

O

3

 content (6.11—30.58 wt. %) and most

Fig. 5. Nomenclature and composition of spinels from Mesozoic al-
kali volcanic rocks based on the classification of Deer et al. (1992).

Fig. 6. Al

2

O

3

 vs. TiO

2

 compositional relationships in spinel from

the Mesozoic alkali volcanic rocks. Compositional fields of
spinels from volcanic environments (MORB – mid-ocean ridge
basalt, OIB – ocean-island basalt, LIP – large igneous provinc-
es, ARC – island arc magmas, BABB – back-arc basin basalt)
are compared with spinels from mantle (SSZ and MORB – dot
line) peridotites (according to Kamenetsky et al. 2001). BABB
field is restricted by a dashed line from Lenaz et al. (2000). Anal-
yses of detrital spinels of volcanic origin (black circles) from mid-
Upper Cretaceous flysch sedimets in the Western Carpathians are
plotted for comparison.

background image

453

CHEMICAL COMPOSITION OF SPINELS FROM BASALTS OF THE WESTERN CARPATHIANS

Table 1: Representative microprobe analyses of Cr-spinels from Mesozoic alkali volcanics.

background image

454

MIKUŠ, SPIŠIAK, SÝKORA and DEMKO

Table 2:

 Representative microprobe analyses of Fe-Ti spinels from Mesozoic alkali volcanics.

of them have higher Cr# (60—87 mol %) and
lower Mg# (34—63 mol %) (Table 3).

Inclusions within Cr-spinel

Clinopyroxene inclusions

Cpx inclusions within Cr-spinel from

Podmanín and Čebra  correspond to aug-
ite and diopside according to the classifi-
cation by Morimoto (1989). In comparison
to cpx phenocryst from Štepnica, Dobrá
and Podmanín, the cpx inclusions have
higher TiO

2

 (3.08—4.26 wt. %) and Al

2

O

3

(7.50—11.61 wt. %)  contents. The Na

2

O con-

tent is of about 0.70 wt. % in average (Ta-
ble 4). A higher content of Cr

2

O

3

 in some

cpx inclusion analyses is caused by host-
spinel contamination.

The QUILF program (Andersen et al. 1995)

and a single cpx thermometer proposed by
Mercier (1976) which refer to hypothetical
spinel (as an associated crystallized phase)
were used for thermometric calculations
based on Mg-Fe partitioning between host
spinels and cpx inclusions in Podmanín.
The QUILF data show the temperature of cpx
crystallization between 1143—1183 ºC corre-
sponding to a pressure of 0.50—0.68 GPa
(Nimis 1995). The minimum temperature
ac-cording to Mercier’s  thermometer corre-
sponds to 1023—1175 ºC.

Plagioclase and melt inclusions

Plagioclase was found only as inclusions

in Cr-spinel. Albite end-member is domi-
nant (81.40 mol %) in the plagioclase inclu-
sion from Čebra . This albite is probably
not primary magmatic material, but it could
be a product of secondary hydrothermal al-
teration of the basalt body.

Most of the residual glass analyses project

on the border of trachybasalt—basalt field in
the TAS diagram (Fig. 7). One analysis corre-
sponds to basanite—tephrite. All the residual
glass analyses are situated above the bound-
ary defining alkali basalt (Irvine & Baragar
1971). The bulk melt compositions show a
drift to lower Na

2

O + K

2

O values into the ba-

salt field. Addition of x % (x = 1—9%) spinel
into the phase assemblage of the silicate melt
and cpx inclusions will cause a decrease in
SiO

2

 content and drift to picrobasalt or

basanite fields. The composition of parental
magma could be derived from bulk melt
composition. The residual glass and bulk melt
compositions suggest alkali character of the
magma. The bulk melt composition shows the

background image

455

CHEMICAL COMPOSITION OF SPINELS FROM BASALTS OF THE WESTERN CARPATHIANS

Table 3:

 Representative microprobe analyses of Cr-spinels of volcanic origin from the Poruba Flysch Formation.

Al

2

O

3

/(CaO+ Na

2

O+ K

2

O) ratio in the range

of 0.70—0.97 and the Al

2

O

3

/(Na

2

O + K

2

O)

ratio in the range of 3.45—4.75, thus corre-
sponding to metaluminous melt. Selected
electron-microprobe analyses of the residu-
al melt are listed in Table 5.

Clinopyroxene phenocrysts

Cpx phenocrysts from Štepnica and Do-

brá correspond to diopside according to
the classification by Morimoto (1989).
Their composition is slightly different
from that of cpx inclusions in Cr-spinel.
Cpx phenocrysts have a lower content of
TiO

2

 (up to 2.16 wt. %) and a lower Al

2

O

3

content (2.2—5.94 wt. %). Their zonation
is a consequence of small differences in
Al

2

O

3

 (e.g. 2.31—3.65 wt. %), TiO

2

 (e.g.

1.16—1.73 wt. %),  FeO and MgO contents
in individual zones. The Al

VI

/Al

IV

 ratio is

always less than 1. Calculated pressures
according the pyroxene barometer by Ni-
mis (1995) correspond to 0.41—0.69 GPa.

The distinct compositional differenc-

es in terms of TiO

2

, FeO, MnO, MgO

and Na

2

O contents have been observed

between homogeneous cores and zoned
rims. Cores are enriched in FeO
(10.44 wt. %), MnO (0.54 wt. %) and
Na

2

O (1.94 wt. %) in comparison with

rims. The Al

VI

/Al

IV

 ratio is always

above 1. On the other hand, zoned cpx
rims are enriched in TiO

2

 (2.16 wt. %),

and MgO compared to cores (Fig. 4, Ta-
ble 4). Barometric calculation for one of
these cores yielded the value of 1.15 GPa.

Cpx phenocrysts with exsolved lenticu-

lar cpx lamellas occur rarely in Dobrá. This
cpx has the highest Al

2

O

content

(6.70 wt. %) and the lowest FeO content
(2.56 wt. %). The exsolved cpx contains
up to 4.88 wt. % Al

2

O

3

 and 1.99 wt. % of

CaO. These cpx correspond to enstatite
(En

85—88 

mol %, Fs

11

 mol %, Wo

1—4

 mol %).

The cpx phenocrysts from Podmanín

have the lowest TiO

2

 (up to 0.81 wt. %)

and Al

2

O

3

 (0.62—1.44 wt. %) contents. On

the other hand, they have remarkable con-
tents of Cr

2

O

3

 (0.66—2.02 wt. %) and

could be classified as Cr-diopside. Na

2

O

content is usually the highest (up to
2 wt. %).  Cr-diopsides have the highest
Al

VI

/Al

IV

 ratio (1.56—3.30). Cr-diopside

phenocrysts are rarely heterogeneous
(small differences in SiO

2

, Al

2

O

3

, TiO

2

,

FeO contents). The calculated pressures us-
ing the barometer of Nimis (1995) corre-
spond to 1.34—1.48 GPa.

background image

4

5

6

MIKUŠ, SPIŠIAK, SÝKORA and

 DEMKO

Table 4: Representative microprobe analyses of clinopyroxenes from Mesozoic alkali volcanics.

background image

457

CHEMICAL COMPOSITION OF SPINELS FROM BASALTS OF THE WESTERN CARPATHIANS

Table 5: Representative microprobe analyses of glass inclusions
and albite in volcanic spinels.

Discussion

Spinel substitutions

Although there is nearly complete solid solution between

the magnetite-ulvöspinel spinels and the chromate and alu-
minate spinels at magmatic temperatures (Sack & Ghiorsio

Fig. 7. Total alkali silica (TAS) diagram (Le Maitre et al. 1989) with
projection points of melt inclusions in Cr-spinels from Podmanín.
Dashed arrows indicate bulk melt composition with added different
spinel content (1—9 %). Fields of Cretaceous basalts from the EWC
and CWC are after Hovorka & Spišiak (1988), Hovorka et al.
(1999), solid line—boundary between alkaline rocks (ALK) and
tholeiites (TH) after Irvine & Baragar (1971), dashed line – after
MacDonald & Katsura (1964). Other abbreviations: q – normative
quartz; ol – normative olivine.

1991), no continuous solid solution has been observed in
studied samples. In Mesozoic alkali basalts both discrete
phases (Cr-spinels and Fe-Ti spinels) are present. Cr-spinel
(peridotitic and volcanic) compositional variations follow
the effects of tetrahedral Mg 

 Fe

2+

  substitution (Fig. 8a)

and octahedral Cr 

 Al substitution (Fig. 8b), whereas

2Fe

3+

 

 Fe

2+

+Ti

4+

 exchange takes place in Fe-Ti spinels

(magnetite—ulvöspinel series) (Fig. 8c). Cr 

 Al substitu-

tion is a dominant mechanism for Cr-spinel chemical vari-
ability. The described substitution trends are identical with
those reported for Madeira Island alkaline lava (Mata &
Munhá 2004).

Fe-Ti spinels from CWC alkalic rocks are somewhat

poorer in Ti (Usp

8—38

) than those from other alkali basalts

occurrences (e.g. Usp

52—71

, Corner & Maury 1980; Price &

Taylor 1980, etc.). Ti-depletion of the studied Fe-Ti
spinels could be explained in terms of alteration processes
(Fig. 3f). Fe-Ti spinels in alkali basalts are richer in minor
components (Al and Mg) than those from tholeiitic rocks
and andesites. The distinctive feature of Fe-Ti spinels from
alkalic rocks is their tendency toward high Al

2

O

content

(Frost & Lindsley 1991).

Cr-spinel alteration

Alteration processes were recognized on the basis of

chemistry and textural changes (Fig. 3). Alteration pro-
cesses mainly affected volcanic chromium spinels. In
comparison to unaltered volcanic spinels, altered Cr-
spinels typically have a higher TiO

2

 content (up to

8.4 wt. %). Al

2

O

3

 contents are lower (17—24 wt. %), and so

are Cr

2

O

3

 contents (12—20 wt. %) and MgO (usually be-

tween  8—12 wt. %, rarely  ~ 3 wt. %). Altered spinels are en-
riched in FeO (15—26 wt. %) and Fe

2

O

3

 (15—35 wt. %).

Two distinct trends of Al

2

O

3

 and Cr

2

O

3

 loss are displayed

in Fig. 9. The Al/Cr loss ratios are rather similar (1.56—1.77
respectively, which means a Al/Cr loss rate of 3 : 2) and
depend on the initial composition of unaltered Cr-spinels.
The average Al

2

O

3

 and Cr

2

O

3

 loss in the first trend is

34.5 % and 22.2 % respectively. The second trend shows
Al

2

O

3

 loss of 30.7% and Cr

2

O

3

 loss of 26.2 %. Generally,

dissolution of MgO, Al

2

O

3

 and enrichment in FeO, Fe

2

O

3

and TiO

2

 were recognized. Changes (usually enrichment)

in MnO, ZnO and V

2

O

5

 content are not so evident. Altered

spinels have only a slightly higher content of these oxides.

Implication for the source of detrital spinel

We compared the composition of spinels from Creta-

ceous alkali volcanics with detrital spinels of volcanic
origin from Cretaceous sedimentary rocks (Fig. 6, Ta-
ble 3, Fig. 10). The most detrital volcanic spinels (fol-
lowing the discrimination criteria proposed by Lenaz et
al. 2000; Kamenetsky et al. 2001) in CWC Cretaceous
sediments were found in the Poruba flysch Formation
(Albian) in the Tatric and Fatric (Krížna Nappe) Units.
Some localities in the Poruba Flysch Formation show
37 % of volcanic spinels in the whole spinel population.
Detrital volcanic spinels have a different composition

background image

458

MIKUŠ, SPIŠIAK, SÝKORA and DEMKO

(usually are richer in Cr

2

O

3

 and TiO

2

) from those of alka-

li volcanic rocks and most of them correspond to the
spinels from back-arc basin basalts (BABB) or mid-ocean
ridge basalts (MORB) according to the classification by
Kamenetsky et al. (2001). Volcanic spinels from Creta-
ceous alkali volcanics correspond to intra-plate alkali
basalts (Fig. 10). Therefore, Mesozoic alkali rocks most
probably could not be an important source of detrital
spinel in Cretaceous sediments of the Tatric and Fatric
Tectonic Units. Another argument for this suggestion
could be knowledge that Fe-Ti spinels (titanomagne-
tites), which are quite usual on some alkali volcanic out-
crops, were not found among detrital spinels. The source
of detrital spinel in the Poruba Formation remains un-
known.

One of the solutions for the source rock of detrital vol-

canic Cr-spinel from the Poruba Flysch Formation could
be back-arc basin basalts (BABB) of the Meliata Ocean.
The opening of the Meliata Ocean is in general interpreted
as a result of back-arc rifting due to Paleotethys subduc-
tion under the Euroasian plate (e.g. Stampfli et al. 1998).
The initial stages of the Meliata Ocean opening as a back-
arc basin (with BABB) with later conversion to typical
MORB is suggested by Ivan (2002).

The composition of peridotitic spinels from Mesozoic

alkali volcanic rocks is similar to those of spinels from
type I peridotites, according to Dick & Bullen (1984) and
they show lherzolite character. In some cases (Podmanín)
this type of spinel could be a part of disintegrated upper-
mantle xenoliths, entrapped in magma of low viscosity.

Fig. 8. Correlation of major elements in spinels from Mesozoic al-
kali basalts of Slovakia.

Fig. 9. Relationship between Al and Cr during alteration of
spinels from Mesozoic alkali basalts of the Western Carpathians.

Fig. 10. Cr# vs. TiO

2

 compositional relationship in volcanic Cr-spin-

els from the Mesozoic alkali volcanic rocks in comparison with
detrital spinels from Cretaceous flysch sediments of the Western
Carpathians (black circles). Compositional fields are after Arai
(1992). Symbols as in Fig. 3.

background image

459

CHEMICAL COMPOSITION OF SPINELS FROM BASALTS OF THE WESTERN CARPATHIANS

Cr-diopside phenocrysts could be part of these upper-man-
tle xenoliths as well. However, there is one contradiction.
The Cr-rich spinel inclusions from Cr-diopside correspond
to the spinels from harzburgite. In this case, mantle rocks
should represent both rock types.

Melt composition

Cpx inclusions associated with residual glass crystal-

lized (1143—1183 ºC and 0.50—0.68 GPa) within the host
spinel from the entrapped melt as a phase in equilibrium
with spinel (cpx + sp). The composition of the residual
glass is slightly different from that of whole rock analyses
reported from CWC by Hovorka & Spišiak (1988) and Ho-
vorka et al. (1999) (Fig. 7). However, the composition of
bulk melt (residual glass + daughter cpx + X % spinel) part-
ly overlaps the field of Cretaceous basalts from the CWC.
The alkali character of the melt is apparent from the TAS
diagram. Tectonic affinity of the basaltic volcanites is
shown in a discrimination diagram after Mullen (1983).
Residual glass and bulk melt compositions are situated in
the ocean island alkaline basalt field (Fig. 11). The bulk
melt composition is the same as reported by Hovorka &
Spišiak (1988) and Hovorka et al. (1999) from the CWC.

Cpx phenocryst

Three essential types of cpx phenocrysts were observed

in alkali basalts from the CWC: (1) oscillatory zoned (Ti-
rich) diopside phenocrysts, (2) Fe-rich diopside cores with
oscillatory zoned Ti-rich rims and (3) Cr-diopsides. Ac-
cording to the Al

VI

/Al

IV

 ratio, Na

2

O, TiO

2

 content and py-

roxene barometry (Nimis 1995), high- and low-pressure
cpx phenocrysts can be distinguished. In general, high-
pressure cpx has a higher Al

VI

/Al

IV

 ratio ( > 1) along with a

higher Fe/Fe + Mg ratio, higher Na

2

O content and lower

TiO

2

 content (Dobosi & Horváth 1988). The Cr-diopsides

and Fe-rich cores could be high-pressure phases (high
Al

VI

/Al

IV

 ratio, higher Na

2

O content) originated in the up-

per mantle. Oscillatory zoned diopsides with higher TiO

2

content, low Na

2

O content and low Al

VI

/Al

IV

 ratio are sup-

posed to be low-pressure cpx, which could crystallize in a
crustal magmatic reservoir or during magma ascent.

Conclusions

 Volcanic spinels, peridotitic spinels and altered

spinels were distinguished according to spinel chemical
composition.

 Peridotitic spinels are supposed to originate in mantle

peridotites and most likely represent relics of upper-man-
tle xenoliths, which had been entrained during the erup-
tion of alkali volcanites.

 Mesozoic alkali volcanites were not a principal source

for detrital Cr-spinels in Cretaceous flysch sediments.

 Cpx phenocryts reflect at least two stages of magma

evolution (upper-mantle cpx 

 1.34—1.48 GPa and Ti-rich

zoned crustal cpx 

 0.41—0.69 GPa).

Acknowledgments: 

We thank Dr. V. Hurai, Dr. D. Lenaz

and an anonymous reviewer for critical reviews and con-
structive comments on a preliminary draft of this paper
which greatly improved the final version. We are thankful
to J. Spratt, A. Kearsley and Dr. T. Williams from the Natural
History Museum in London for help with works on elec-
tron microprobe. This study also represents a partial out-
put from the Grants APVT-51-012504, APVV-51-046105,
VEGA 1/2031/05 and VEGA 2/6092/26.

References

Andersen D.J., Lindsley D.H. & Davidson P.M. 1995: QUILF –

A program to assess equilibria among Fe-Mg-Ti oxides, py-
roxenes, olivine, and quartz. Computers in Geoscience 19,
1333—1350.

Arai S. 1992: Chemistry of chromian spinel in volcanic rocks as a po-

tential guide to magma chemistry. Mineral. Mag. 56, 173—184.

Bujnovský A., Kantor J. & Vozár J. 1981: Radiometric dating of Me-

sozoic basic eruptive rocks of the Krížna nappe in the NW part
of the Low Tatra. Geol. Zbor. Geol. Carpath. 32, 221—230.

Corner G. & Maury R.C. 1980: Petrology of the volcanic island of

Annobon, Gulf of Guinea. Mar. Geol. 36, 253—267.

Deer W.A., Howie R.A. & Zussman J. 1992: An introduction to the

rock-forming minerals (2

nd

 Edition). Longman, England, 1—696.

Dick H.J.B. & Bullen T. 1984: Chromian spinel as a petrogenetic

indicator in abyssal and alpine-type peridotites and spatially
associated lavas. Contr. Mineral. Petrology 86, 54—76.

Dobosi G. & Horváth I. 1988: High- and low pressure cognate cli-

nopyroxenes from alkali lamprophyres of the Velence and Buda
Mountains, Hungary. Neu. Jb. Mineral. Abh. 158, 3, 241—256.

Frost B.R. & Lindsley D.H. 1991: Occurrence of iron-titanium

oxides in igneous rocks. In: Lindsley D.H. (Ed.): Oxide min-
erals: petrologic and magnetic significance. Rev. Mineral. 25,
433—462.

Fig. 11. Discrimination diagram of basalts according to Mullen
(1983).  OIT – ocean island tholeiites, OIA – ocean island alka-
line basalts, CAB – volcanic arc calc-alkaline basalts, IAT – is-
land arc tholeiites, MORB – mid-ocean ridge basalts. Fields of
Cretaceous basalts from the EWC and CWC are after Hovorka &
Spišiak (1988), Hovorka et al. (1999). Symbols as in Fig. 7.

background image

460

MIKUŠ, SPIŠIAK, SÝKORA and DEMKO

Hovorka D. & Spišiak J. 1988: Mesozoic volcanism of the Western

Carpathians. Veda, Bratislava, 1—263.

Hovorka D., Dostal J. & Spišiak J. 1999: Geochemistry of the Cre-

taceous alkali basaltic rock of the central part of the Western
Carpathians (Slovakia). Krystalinikum 25, 37—48.

Ivan P. 2002: Relics of the Meliata ocean crust: Geodynamic impli-

cations of mineralogical, petrological and geochemical prox-
ies. Geol. Carpathica 53, 245—256.

Irvine T.N. & Baragar W.R.A. 1971: A guide to the chemical classi-

fication of the common volcanic rocks. Canad. J. Earth Sci.
8, 523—548.

Jablonský J., Sýkora M. & Aubrecht R. 2001: Detritic Cr-spinels in Me-

sozoic sedimentary rocks of the Western Carpathians (overview of
the latest knowledge). Miner. Slovaca 33, 487—498 (in Slovak).

Kamenetsky V.S., Crawford A.J. & Meffre S. 2001: Factors con-

trolling chemistry of magmatic spinel: an empirical study of
associated olivine, Cr-spinel and melt inclusion from primitive
rocks.  J. Petrology 42, 655—671.

Le Maitre R.W., Bateman P., Dudek A., Keller J., Le Bas M.J., Sab-

ine P.A., Schmid R., Sorensen H., Streckeisen A., Woolley
A.R. & Zanettin B. 1989: A classification of igneous rocks and
glossary of terms. Blackwell, Oxford.

Lefeld J. 1985: Jurassic and Cretaceous lithostrafic units of the

Tatra Mts. Stud. Geol. Pol. 84, 1—93.

Lenaz D., Kamenetsky V.S., Crawford A.J. & Princivalle F. 2000:

Melt inclusion in detrital spinel from the SE Alps (Italy-Slove-
nia): a new approach to provenance studies of sedimentary ba-
sins. Contr. Mineral. Petrology 139, 748—758.

MacDonald G.A. & Katsura T. 1964: Chemical composition of Ha-

waiian lavas. J. Petrology 5, 1, 82—133.

Mata J. & Munhá J. 2004: Madeira Island alkaline lava spinels:

petrogenetic implications. Miner. Petrology 81, 85—111.

Mello J. (Ed.), Potfaj M., Te ák F., Havrila M., Rakús M., Buček S.,

Filo I., Nagy A., Salaj J., Maglay J., Pristaš J. & Fordinál K. 2005:
Geological map of the Middle Váh valley region 1 : 50,000.
ŠGÚDŠ, Bratislava.

Mercier J-C.C. 1976: Single-pyroxene geothermometry and geo-

barometry.  Amer. Mineralogist 603—615.

Mišík M., Jablonský J., Fejdi P. & Sýkora M. 1980: Chromian and

ferrian spinels from Cretaceous sediments of the West Car-
pathians.  Miner. Slovaca 42, 2, 101—112 (in Slovak).

Morimoto N. 1989: Nomenclature of pyroxenes. Subcomitee on

pyroxenes. Commision on new minerals and mineral names.
Canad. Mineralogist 27, 143—156.

Mullen E.D. 1983: MnO/TiO

2

/P

2

O

5

: a minor element discriminant

for basaltic rocks of oceanic environments and its implications
for petrogenesis. Earth Planet. Sci. Lett. 62, 53—62.

Nimis P. 1995: A clinopyroxene geobarometer for basaltic systems

based on crystal structure modeling. Contr. Mineral. Petrology
121, 115—125.

Papike J.J., Cameron K.L. & Baldwin K. 1974: Amphiboles and

pyroxenes: Characterization at other than quadrilateral compo-
nents and estimates of ferric iron from microprobe data. Geol.
Soc. Amer., Abstracts with Programs 6, 1053—1054.

Plašienka D. 1999: Tectonochronology and paleotectonic model of

the Jurassic—Cretaceous evolution of the Central Western Car-
pathians.  Veda, Bratislava, 1—125.

Price R.C. & Taylor S.R. 1980: Petrology and geochemistry of the

Banks Peninsula volcanos, South Island, New Zeland. Contr.
Mineral. Petrology 72, 1—8.

Ryburn R.J., Raheim A. & Green D.H. 1976: Determination of P, T

paths of natural eclogites during metamorphism – record of
subduction. A correction to a paper by Rahaim & Green
(1975).  Lithos 9, 161—164.

Sack R.O. & Ghiorso M.S. 1991: Chromite as a petrogenetic indica-

tor. In: Lindsley D.H. (Ed.): Oxide minerals: petrologic and
magnetic significance. Rev. Mineral. 25, 323—353.

Spišiak J. & Hovorka D. 1997: Petrology of the Western Car-

pathians Cretaceous primitive alkaline volcanics. Geol. Car-
pathica 48, 2, 113—121.

Spišiak J. & Balogh K. 2002: Mesozoic alkali lamprophyres from

granitoids from Malé Karpaty and Nízke Tatry Mts.- geochem-
istry and geochronology. Geol. Carpathica 53, 5, 283—294.

Stampfli G.M., Mosar J., Marquer D., Marchant R., Baudin T. &

Borel G. 1998: Subduction and obduction processes in the
Swiss Alps. Tectonophysics 296, 159—204.