background image


Triassic crinoids from the Tatra Mountains and their

stratigraphic significance (Poland)






Institute of Geological Sciences, Wroclaw University, Cybulskiego 30, PL-50-204 Wroclaw, Poland;


Department of Paleontology and Biostratigraphy, Faculty of Earth Sciences, University of Silesia, Będzińska 60, PL-41-200 Sosnowiec,


(Manuscript received February 18, 2005; accepted in revised form October 6, 2005)

Abstract: Stratigraphically important crinoid species Holocrinus acutangulus (Meyer) and Holocrinus dubius (Goldfuss)
have been found for the first time in the Tatras, and the occurrence of Silesiacrinus silesiacus (Beyrich) was clarified. The
following crinoid Zones: Dadocrinus,  acutangulus,  dubius and silesiacus, known from the Germanic Basin, are pro-
posed for the Tatra Mountains. The Dadocrinus Zone is distinguished in the Tatricum and Fatricum complexes; both the
acutangulus and dubius Zones are distinguished in the Tatricum complex, and the silesiacus Zone is distinguished in the
Fatricum complex. The crinoid remains determined previously as Encrinus and Entrochus were found to have no
stratigraphic value in the present state of research. The crinoids suggest a late Olenekian age for the limestones from
Giewont, a latest Bithynian—early Pelsonian age for the limestones from Krzesanica and a middle Pelsonian age for the
limestones of Ciemniak. The dolomites from the Filipka Valley quarry are dated as late Pelsonian—early Illyrian.

Key words: Middle Triassic, Tatra Mountains, stratigraphy, taxonomy, crinoids.


The Tatra Mountains, in which three tectonic units
(Hronicum, Fatricum and Tatricum) are recognizable,
are poor in Triassic fossils (except in the Rhaetian sedi-
ments). Ammonoids and conodonts only occur within
relatively small-sized areas in a complex belonging to
the Hronicum in the Wielkie Koryciska and Siwiańskie
Turnie (Zawidzka 1972; Kotański 1973a; Gaździcki
1978). Therefore, other groups of fossils, like crinoids
or calcareous algae (Dasycladaceae), are used in Trias-
sic biozonation. Amongst the crinoids, the genus Dado-
crinus Meyer is the most important stratigraphically,
considered to be an indicator of the early Anisian (e.g.
Kotański 1958, 1959b, 1973b; Piotrowski 1965; Zaw-
idzka 1967), however, other taxa can also be used. Up
to now, in the Tatras, only D. grundeyi Langenhan
(Lefeld 1958) and D. gracilis (Buch) (Passendorfer
1951; Jaglarz 2004) have been found in the Tatricum
complex, and Pentacrinus bavaricus (Goldfuss) (Goetel
1917) in the Fatricum complex. In both these units the
following taxa occur: Dadocrinus sp. (e.g. Kotański
1958, 1959b, 1963a,b, 1973b; Grochocka-Rećko 1963;
Szulczewski 1963; Iwanow 1965; Piotrowski 1965;
Bełka & Gaździcki 1976), Encrinus sp. (e.g. Kotański
1958, 1963a,b; Guzik 1963; Sochaczewski 1997), En-
crinus liliiformis Lamarck (Uhlig 1897; Rabowski
1959; Kotański 1963a, 1965; Passendorfer 1983), En-
trochus sp. (Kotański 1963b; Piotrowski 1965; Bełka &
Gaździcki 1976), Pentacrinus  sp. (Radwański 1968;
Gaździcki 1974). Although the Hronicum complex de-
posits (upper Anisian—Ladinian) yield numerous fossil
crinoids, up to now the crinoids remain undescribed.
Only one columnal of Traumatocrinus cf. caudex (Ditt-

mar) has been described from Ladinian age sediments
(Głuchowski 2002). Therefore, the assignment of
crinoids from the Tatras is poorly known and in need of
critical revision. In addition, preliminary data presented
in this paper indicate the presence of stratigraphically
important species.

Stratigraphic significance of Triassic crinoids

Papers concerning the application of Triassic crinoid

stratigraphy, are usually related to investigations of epi-
continental deposits of Germanic facies, because the ma-
jority of whole crinoid cups or calyces have been found in
that area. Due to the completeness of fossil crinoids in the
Germanic facies, taxonomic determination to the species
level can be made. In addition, the conodont zonation of
the Muschelkalk deposits is well established. The Upper
Muschelkalk, within the ammonoid zonation, allows pre-
cise placement of crinoid stratigraphic ranges. On this ba-
sis, a crinoid zonation has been proposed (Hagdorn &
Głuchowski 1993) for Upper Silesia (southern Poland),
which is also useful in neighbouring areas: eastern Germa-
ny, Holy Cross Mountains and Sudetes Mountains (Hag-
dorn & Głuchowski 1993; Salamon 2003; Salamon et al.
2003; Głuchowski & Salamon 2005), as well as in the
Mecsek Mountains in Hungary (Hagdorn et al. 1997). Ex-
cept for the Dadocrinus and liliiformis Zones, crinoid bio-
zones are not distinguished in the western part of the
Germanic Basin, because there is a lack of important strati-
graphic taxa (Hagdorn & Głuchowski 1993). However, the
latest observations (Niedźwiedzki & Salamon 2002) indi-
cate that the boundaries of at least some crinoid zones
may be slightly diachronic, although they have strati-

background image



graphic value, especially where ammonites and conodonts
are absent. Previous investigations of Tethyan Middle Tri-
assic crinoids are limited, because articulate specimens, or
cups, are very rare. Dadocrinus is treated as the Tethyan
index of the Lower Anisian and enables correlation with
the Germanic Basin (e.g. Lefeld 1958; Kotański 1959b;
Piotrowski 1965), Encrinus liliiformis, which marks the Il-
lyrian—Ladinian interval (Kotański 1963b, 1965; Senkow-
iczowa & Kotański 1979; Kotański & Zawidzka 1979),
and  Traumatocrinus Wöhrmann, which characterizes the
Ladinian (Głuchowski 2002). Until now, however, none of
the crinoid zones have been distinguished in the Tatra
Mountains, although nearly all species can be correlated
with the crinoid zones in the Germanic Basin, which also
occur in the eastern and southern Alps (Kristan-Tollmann
& Tollmann 1967; Kristan-Tollmann & Spendlingwimmer
1975; Hagdorn et al. 1997). In the eastern part of the
Tethys and elsewhere (Amur Basin, New Zealand), only
three stratigraphically important taxa from the European
Middle Triassic, namely Dadocrinus gracilis,  Holocrinus
dubius (Goldfuss) and Eckicrinus radiatus (Schauroth) are
known. However, their determination and/or stratigraphic
position have been questioned (Bather 1918; Kristan-
Tollmann 1988; Hagdorn et al. 1997; Eagle 2003;
Głuchowski & Salamon 2005).

Materials and methods

During investigations in 2003—2004 several dozen sites

from all three tectonic-facies units of the Polish part of the
Tatra Mountains were sampled. About 40 rock samples
consisting of limestones and dolomites with macroscopic
crinoid ossicles were taken from the Tatricum, Fatricum
and Hronicum complexes. They were subjected to chemi-
cal maceration according to the methods described by
Boczarowski (2001). The rocks were then etched in


COOH and buffered by (CH




Ca. According to

Boczarowski (2001) the best results were obtained using a
mixture of ½ supersaturated (CH




Ca,  ¼ 30 %



COOH, and ¼  H


O. Most crinoid ossicles were not

well preserved enough for taxonomic determination.
Therefore, only the samples from the following sites were
chosen for investigation (see also Fig. 1):

 The southern wall of the Mt Giewont (Tatricum com-

plex); at the descent by the tourist path toward the Wyżna
Kondracka Pass, near the end of the securing chains. The
crinoids occur within black micritic limestones, in the high-
est part of the Triassic complex, near the boundary with
Jurassic limestones. Over 100 columnals and short (up to 6
columnals) stem fragments belonging exclusively to Dado-
crinus were collected. Elements of Holocrinus acutangulus
(Meyer) were not associated with Dadocrinus.

 The top of the Mt Krzesanica (the Czerwone Wierchy

Mts group, Tatricum complex). The crinoids occur within
intercalations of black, micritic limestones forming inter-
beddings within vermicular and breccia limestones. A few
columnals of Holocrinus  acutangulus as well as numerous
columnals of the Encrinidae have been documented. Da-
docrinus columnals were not found.

 Eastern part of the Mt Ciemniak top (the Czerwone

Wierchy Mts group, Tatricum complex). Crinoids found
within black-grey micritic limestones intercalations, form-
ing interbeddings within dolomites. A few columnals be-
longing to Holocrinus dubius and more frequent
columnals of Encrinidae have been documented.

 Small, abandoned quarry in the Filipka Valley (Fatri-

cum complex) at the southern base of the Mt Filipczańs-
ki Wierch. The organodetrical dolomite samples are from
lithological A Unit (see Sochaczewski 1997 for detailed
locality and lithological description). Mass occurrence
of large (up to 9 mm), but poorly preserved, isolated co-
lumnals and stem fragments (up to 10 columnals) of
crinoids have been found. The majority of columnals do
not preserve their articular facets, however, in some cases
they are poorly visible. Columnals characterized by a large

Fig. 1. Geological map of the Tatra Mountains (after Bac-Moszaszwili et al. 1979; modified).

background image



lumen were assigned to Silesiacrinus  cf. silesiacus (Bey-
rich), and columnals with considerably smaller lumen
were assigned to the Encrinidae.

 The top of the Mt Kopieniec Wielki (Fatricum com-

plex); from the intercalations of black micritic limestone,
which form interbeds within dolomites. Isolated colum-
nals belonging to Encrinidae, not associated with other
crinoid remains, have been documented.

Taxonomic review

Depository referred to in this paper is: MGUWr – Mu-

seum of Geological Sciences of Wrocław University.

Class  Crinoidea Miller, 1821

Subclass  Articulata Zittel, 1879

Order  Millericrinida Sieverts—Doreck, 1952

Suborder  Millericrinina Sieverts—Doreck, 1952

Family  Dadocrinidae  Lowenstam, 1942

Dadocrinus Meyer, 1847

Type species  Encrinus gracilis Buch, 1845, p. 27.

Dadocrinus sp

. Fig. 2A—E; Fig. 3B

M a t e r i a l :

 58 free columnals; single holdfast; 4 strong-

ly weathered rock surfaces with isolated columnals; 3 pol-
ished slabs; MGUWr-5353s.

D e s c r i p t i o n :

 Columnals low and rounded; maximum

diameter 3.0 mm. The distal columnals are higher. Crenu-
lation pattern multiradiate; crenulae thick, very short in
proxistele to long in dististele. Columnal latera flat or
rarely convex. Lumen wide, circular or slightly pentago-
nal. Discoidal holdfast.

Family indet.

Silesiacrinus Hagdorn et Głuchowski, 1993

Type species Entrochus silesiacus Beyrich, 1857, p. 46.

Silesiacrinus cf. silesiacus (Beyrich, 1857)

Fig. 2F; Fig. 3C

1993  Silesiacrinus silesiacus (Beyrich) – Hagdorn & Głuchowski,

p. 171, 175, fig. 10/1

1996 Silesiacrinus silesiacus (Beyrich) –  Hagdorn et  al., p. 65—68,

pl. 6

M a t e r i a l :

 1 free columnal; 3 strongly weathered rock

surfaces with numerous isolated columnals; 1 polished
slab; MGUWr-5354s.

D e s c r i p t i o n :

 Large columnals; maximum diameter

9 mm. Columnals low, circular and with straight latera. Ar-
ticular facets with multiradiate crenulation and long cul-
mina; distinct epifacet. Lumen very wide, circular or rarely

R e m a r k s :

 This taxon only occurs in the samples from

the Filipka Valley quarry. Large columnals with narrow and
oval lumen, assigned here to encrinids (Filipka Valley quar-
ry), are accompanied by columnals with wide lumen be-

longing in our opinion to S. cf. silesiacus. This occurrence
is supported by H. Hagdorn (pers. comm. November 2004).

Order  Isocrinida Sieverts-Doreck, 1952

Family  Holocrinidae Jaekel, 1918

Holocrinus Wachsmuth et Springer, 1886

Type species Encrinus beyrichi Picard, 1883, p. 199

Holocrinus acutangulus 

(Meyer, 1847) Fig. 2G—I

1847  Chelocrinus  ?acutangulus – Meyer, 1847, pl. 32, figs. 7, 18,


1849  Chelocrinus  ?acutangulus – Meyer, p. 272—275, tab. XXXXII,

figs. 17—18, 21—26

1883  Encrinus beyrichi – Picard, p. 199
1886 ?Holocrinus beyrichi Wagner – Wachsmuth & Springer, p. 139
1893  Holocrinus wagneri Benecke, 1887 – Jaekel, p. 203—204
1993 Holocrinus acutangulus (Meyer, 1847) – Hagdorn &

Głuchowski, p. fig. 6

M a t e r i a l :

 9 free columnals; 3 strongly weathered

rock surfaces with columnals; MGUWr-5355 s.

D e s c r i p t i o n :

 Columnals stellate to pentagonal or

subpentagonal, fairly small; maximum diameter 3.1 mm.
Small and circular lumen. The crenulation pattern multira-
diate with relatively long culmina. The adradial crenulae
weakly developed in form of nodules. Petal floors narrow
and lanceolate. Nodals slightly higher than internodals,
with five relatively large and deeply impressed elliptical
cirrus scars.

Holocrinus dubius 

(Goldfuss, 1831) Fig. 2J—K

1831  Pentacrinites dubius – Goldfuss, 176, pl. 53, fig. 6
1835  Encrinites dubius (Goldfuss, 1831) – Quenstedt, p. 225—228,

pl. 4, fig. 2

1857  Entrochus dubius (Goldfuss, 1831) – Beyrich, p. 37, 46
1918  Isocrinus dubius (Goldfuss, 1831) – Bather, p. 253
1926  Entrochus dubius (Goldfuss, 1831) – Assmann, p. 515
1928  Entrochus dubius (Goldfuss, 1831) – Schmidt, p. 127,

fig. 245

1982  Tyrolecrinus dubius (Goldfuss, 1831) – Klikushin, p. 307
1993  Holocrinus dubius (Goldfuss, 1831) – Hagdorn, p. 213, figs. 1—2

M a t e r i a l :

 13 free columnals; 4 strongly weathered

rock surfaces with isolated columnals; MGUWr-5356s.

D e s c r i p t i o n :

 Columnals pentagonal or subpentago-

nal to substellate; maximum diameter 4.6 mm. Small and
circular lumen. Articular facets covered by thick marginal
and denticulate adradial crenulae. Smallest columnals
with multiradiate crenulation pattern and long culmina.
Petal floors well developed and wide, lanceolate or pyri-
form. Nodals with 5 deeply impressed, relatively small and
elliptical cirrus scars; cirrus scars with a distinct transverse

Order  Encrinida Matsumoto, 1929

[nom. transl. Hagdorn, 1987]

Family  Encrinidae  Dujardin et Hupé, 1862

Encrinidae gen. et sp. indet.

 Fig. 2L; Fig. 3A

M a t e r i a l :

 38 free columnals; 2 strongly weathered

rock surfaces with isolated columnals; MGUWr-5357s.

background image



D e s c r i p t i o n :

 Proximal columnals pentagonal, distal

columnals rounded and very low. Maximum diameter
8.5 mm. Latera smooth or convex. Multiradiate crenulation
with well-developed granulated perilumen. Some colum-
nals with petaloid crenulation, others distinctly pentalobate
and bordered by thick and short crenulae occur. Distal co-

Fig. 2. Columnals from the Tatra Mountains; scale bars 1 mm. A—E – Dadocrinus sp. (Mt Giewont). A – juvenile?; MGUWr-5353s/D1.
B—D – distal/median columnals; MGUWr-5353s/D2-4. E – part of holdfast; MGUWr-5353s/D5. F – Silesiacrinus cf. silesiacus (Bey-
rich) (Filipka Valley); MGUWr-5354s/S1. G—I – Holocrinus acutangulus (Meyer) (Mt Krzesanica). G—H – medial/proximal columnals;
MGUWr-5355s/B1-2. I – distal columnal; MGUWr-5340/B3. J—K – Holocrinus dubius (Goldfuss) (Mt Ciemniak); MGUWr-5356s/H4—5.
J – proximal columnal; MGUWr-5356s/H6. K – median/distal columnal; MGUWr-5356s/H7. L  – columnal of Encrinidae sp. et gen.
indet. (Mt Kopieniec Wielki); MGUWr-5357s/E1.

lumnals higher than median or proximal, with convex lat-
era. Lumen relatively wide and round, in some cases sur-
rounded by more or less developed pentalobate to
pentagonal and ornamented perilumen.

R e m a r k s :

 Due to the smaller number of isolated co-

lumnals we are not able to distinguish distinct morpho-

background image



types. Hagdorn et al. (1996) distinguished five morpho-
types among their investigated material. Salamon (2003),
on the other hand, has distinguished six morphotypes.

Previous data on crinoids from

the Tatra Mountains

Up to now only one locality with crinoid calyces has

been found in the Tatra Mountains. Within the 3 cm
thick 3 m lateral bed, occurring in the upper part of the
Triassic outcrops at Zawrat Kasprowy (Tatricum), Lefeld
(1958) found ca. 120 calyces and crowns of Dadocrinus
grundeyi. The remaining reports of Tatras crinoids (e.g.
Kotański 1959a,b; Piotrowski 1965; Sochaczewski 1997)
are based on single elements, especially columnals; their
verification is not possible because there is not photo-
graphic or descriptive documentation. Dadocrinus and
Encrinus are the most commonly described Triassic taxa
from the Tatra Mountains. Most authors did not explain

Fig. 3. Crinoids on the surface of polished slabs. Tatra Mountains; scale bars 10 mm. A – Encrinidae sp. et gen. indet. (Mt Kopieniec
Wielki); MGUWr-5357s/E2. B – Dadocrinus sp. (Giewont); MGUWr-5353s/D9. C – Silesiacrinus cf. silesiacus (Filipka Valley);

their taxonomical assignment (e.g. Kotański 1959a; Za-
widzka 1967; Kulikowski 1967). They treated “small”
columnals as Dadocrinus (e.g. Kotański 1959b, 1973b;
Szulczewski 1963; Piotrowski 1965), and “large” colum-
nals as Encrinus (Guzik 1963; Kotański 1958, 1963a;
Sochaczewski 1997). However, size alone cannot be the
discriminative taxonomical feature, because of ontoge-
netic development. Moreover, when analysing the well-
recognized crinoids from the Germanic Basin, it is
possible to indicate different genera within each of these
two size classes. Features like the external shape of co-
lumnaria and characters of the facet are crucial for their
taxonomical determination. Morphology of calyx plates
or brachials is also important. Therefore, the determina-
tions of the specimens of Encrinus and most of the speci-
mens of Dadocrinus are not reliable, and cannot be used
as the basis for stratigraphic correlation. Also the assign-
ment of isolated columnals from the uppermost Triassic
beds of the Giewont to D. gracilis by Passendorfer
(1951) was not correct, because species identification on

background image



the basis of isolated ossicles of Dadocrinus is not reli-
able (e.g. Hagdorn & Głuchowski 1993). Similar species
identification of crinoid elements from the Tatricum and/or
Hronicum complexes, assigned to D. gracilis by Kotańs-
ki & Zawidzka (1979), Senkowiczowa & Kotański
(1979) and Jaglarz (2004) is also not reliable because the
identification was based upon isolated ossicles. The low-
er boundary of the Dadocrinus stratigraphic range is an-
other crucial problem. As mentioned above, in the Tatra
Mountains,  Dadocrinus is treated as the lower Anisian
index, on the basis of analogous occurrence of this
crinoid in Upper Silesia. Dadocrinus appears firstly at
the base of the Lower Muschelkalk in Upper Silesia and
the upper part of the Roetian in the Holy Cross Moun-
tains (e.g. Hagdorn & Głuchowski 1993; Salamon 2003).
Both deposits are traditionally dated as early Anisian,
however, they do not contain any stratigraphically signifi-
cant conodonts and ammonoids (Trammer 1975; Zawidz-
ka 1975). Magnetostratigraphic investigations provide late
Olenekian age to the lowermost part of the Lower Muschel-
kalk (lower part of Dadocrinus Zone) in Poland (Nawrocki
& Szulc 2000). In addition, Entrochus is not stratigraphical-
ly significant because: 1 – lack of documentation and de-
scriptions of diagnostic features of columnals found in the
Tatra Mountains (e.g. Kotański 1963b; Piotrowski 1965)
and assigned to Entrochus, excludes their verification
and species determination; and 2 – Entrochus is a
parataxonomic genus not related to a biological species
(Hagdorn 1995). Many species earlier assigned to the En-
trochus are currently assigned to different genera such as
Holocrinus dubius and Eckicrinus  radiatus.  Encrinus
liliiformis has been mentioned many times from Tatras
(Uhlig 1897; Rabowski 1959; Kotański 1963a, 1965;
Kotański & Zawidzka 1979; Senkowiczowa & Kotański
1979; Passendorfer 1983), but its presence cannot be
considered valid because these papers do not include de-
scriptions or illustrations of E.  liliiformis. For example,
Kotański (1963a, p. 351) only wrote, that “crinoids in the
Strążyńska Valley … were … usually … determined as E.
liliiformis”; and Passendorfer (1983) mentioned numer-
ous columnals of this species from the Strążyńska Valley,
but in his description he paid attention only to the large
sizes of the columnals, not a diagnostic feature of E.  lilii-
formis. According to Rabowski (1959) E. cf. liliiformis
occurs in the uppermost Triassic beds in Giewont. How-
ever, our investigations and those of other authors (i.e.
Passendorfer 1951; Kotański 1959b), does not prove the
occurrence of crinoids other than Dadocrinus. Addition-
ally, the limestones are latest Olenekian or earliest Ani-
sian in age, so they were deposited before the appearance
of the species mentioned (Illyrian). Therefore, the deter-
mination of Rabowski (1959) is incorrect. It is not clear
what is the age of the sediments with the columnals treat-
ed as E. liliiformis. According to Kotański & Zawidzka
(1979), it occurs only in the Illyrian, however, Kotański
(1963b, 1965), Senkowiczowa & Kotański (1979) and
Passendorfer (1983) found E.  liliiformis in the Ladinian
strata as well. Silesiacrinus silesiacus was mentioned from
the Tatra Mountains only by Hagdorn & Głuchowski

(1993), but they did not mention any locality and pro-
vided no documentation on this finding. It is also not
known whether this crinoid comes from the Fatricum or
Hronicum complexes.

The stratigraphic significance of Tatras crinoids

The data presented in the paper allow the presence of four

crinoid biozones in the Tatra Mountains already known
from the eastern part of the Germanic Basin and Mecsek
Mts Muschelkalk: Dadocrinus Zone, acutangulus Zone,
dubius Zone and silesiacus Zone (Fig. 4). The oldest, Dado-
crinus Zone, covers both the Tatricum (Giewont – see data
in this paper; Zawrat Kasprowy – see data in Lefeld
1958) and Fatricum complexes (Dadocrinus crinoids de-
scribed and illustrated by Kotański 1963a). The acutan-
gulus and dubius Zones were distinguished in a  complex
belonging to the Tatricum (Czerwone Wierchy Massif),
and the silesiacus Zone in the Fatricum complex (the Fil-
ipka Valley). The problem of the existence of the liliifor-
mis Zone in the Tatra Mountains has not been resolved
yet and needs further investigation. The small size of
specimens limited to a few sites, poorly preserved crinoid
elements in most localities and very poor crinoid data in
older publications multiply all the problems when deal-
ing with the precise geographical and stratigraphical
ranges of particular zones. Therefore, the absence of par-
ticular zones in the Fatricum or Tatricum complexes is
certainly caused by insufficient data on crinoid fauna
from the Tatra Mts. The stratigraphic ranges of particular
zones distinguished in the Tatras are based on the corre-
lation with the well-documented crinoid zonation of the
Germanic Basin. In addition, the Tatras crinoids allow
age verification of investigated exposures. The lime-
stones from the Ciemniak and Krzesanica peaks, have
been dated as Middle Triassic (Bac-Moszaszwili et al.
1979) or Anisian (Kostiukow 1963). The holocrinids
suggest a latest Bithynian—early Pelsonian age for the
limestones from Krzesanica and a middle Pelsonian age
for the limestones Ciemniak. The dolomites from the Fil-
ipka Valley quarry were dated as Anisian—Ladinian (Bac-
Moszaszwili et al. 1979). Sochaczewski (1997) determined
the crinoid fragments from the quarry as ‘probably Encri-
nus’ and he assigned the investigated dolomites to the
Ladinian age. However, Silesiacrinus  cf. silesiacus col-
lected by the authors indicates an earlier, Anisian age,
because this species and genus occurs in the late Pelso-
nian—early Illyrian interval (Hagdorn & Głuchowski
1993) in the Germanic Basin as well as in the Tethys; it
is also possible that it occurs in the late Illyrian (Kristan-
Tollmann & Tollmann 1967; Hagdorn et al. 1997). The
limestone intercalations within dolomites in the Wielki
Kopieniec and Mały Kopieniec area have been de-
scribed as limestones containing Dadocrinus sp. of Ani-
sian age (Bac-Moszaszwili et al. 1979). The limestones
on the top of the Wielki Kopieniec contain only numer-
ous Encrinidae and no Dadocrinus representatives.
Thus, part of the crinoidal limestones from the Kopieniec

background image



area is not related to dadocrinid accumulations. Encrin-
idae occurred in the western Tethys from the Pelsonian to
the Carnian (Hagdorn et al. 1997); so an early Anisian
age of the limestones from the Wielki Kopienic is im-
probable. According to Kotański (1959b), the mass oc-
currence of Dadocrinus on the Giewont indicates early
Anisian age. However, according to both, Kotański
(1959b) and the author’s observations, the limestones
from the Giewont as well as the bed with mass occurrenc-
es of calyces from the Zawrat Kasprowy (Lefeld 1958),
are not associated with any other crinoid genera. Accord-
ing to data obtained from Upper Silesia, Holy Cross
Mountains and Sudetes (Hagdorn & Głuchowski 1993;
Salamon 2003; Głuchowski & Salamon 2005) such
monospecific dadocrinid accumulations define the lower
part of the Dadocrinus Zone. Magnetostratigraphic data
(Nawrocki & Szulc 2000) suggest the late Olenekian age.


 All stratigraphically important Anisian crinoids

known from the eastern part of the Germanic Basin: Dado-
crinus species, Holocrinus acutangulus,  Holocrinus du-
bius,  Silesiacrinus  silesiacus, occur in the Triassic strata of
the Polish part of the Tatra Mountains. Therefore, it is pos-
sible to confirm the Triassic crinoidal zonation for the
Tatra Mountains based on the biostratigraphic scheme
from the Germanic Basin and Mecsek Muschelkalk. Such
a zonation has fundamental significance for the Tatras by
allowing more precise dating of the Anisian deposits.

 The Dadocrinus Zone is distinguished in the Tatri-

cum and Fatricum complexes; both the acutangulus and
dubius Zones are distinguished in the Tatricum complex,
and the silesiacus Zone is distinguished in the Fatricum
complex. The presence of the liliiformis Zone in the Tri-
assic sequence of the Tatra Mountains is still unresolved
and needs further investigations.

 Previously described taxa from the Triassic strata of

the Polish part of the Tatra Mountains cannot be used for
stratigraphic investigations because of a lack of any docu-
mentation on these findings. Additionally, the majority of
them were determined to the genus level only, and genera
such as Encrinus or Pentacrinus have very wide strati-
graphic ranges. Entrochus, on the other hand, is a paratax-
onomic genus, and thus it is stratigraphically unimportant.


We would like to express our warm

thanks to the authorities and workers of the National Park
of the Tatra Mountains, for permission and help during in-
vestigations. We thank Dr. Hans Hagdorn (Muschelkalk-
museum Ingelfingen, Germany) for help in determination
of the crinoids, and Prof. Dr. Hab. Alfred Uchman (Jagiel-
lonian University, Cracow, Poland) for access to valuable
bibliographic data. We appreciate the Teisseyre family li-
brary, donated to the library of the Institute of  Geological
Sciences of University of Wrocław. Special thanks are also
due to Dr. Torrey Nyborg (Loma Linda University, Cali-
fornia, United States) for improving the English of the pa-
per. Authors express also thanks to Drs. Hans Hess
(Binningen, Switzerland), Riccardo Manni (“La Sapienza”
University, Roma, Italy) and Jozef Michalík (Slovak
Academy of Sciences, Bratislava, Slovak Republic) for
reviews that improved our paper. The investigations were
benefited from the financial support of the Institute of
Geological Sciences, University of Wrocław (Grant
2022/W/ING/04—28; Robert Niedźwiedzki); the Paleon-
tological Society, PalSIRP – Sepkoski Grants 2005 and
the Foundation for Polish Science (FNP) – Domestic
Grants for Young Scientists 2005 (Mariusz A. Salamon).


Assmann P. 1926: Die Fauna der Wirbellosen und die Diploporen

der oberschlesischen Trias mit Ausnahme mit der Brachi-
opoden, Lamellibranchiaten, Gastropoden und Korallen. Jb.
Preuss. Geol. Landesanst. 46, 504—527.

Fig. 4. Crinoid Zones distiguished by Hagdorn & Głuchowski
(1993); after Hagdorn & Głuchowski (1993, Fig. 1), slightly

background image



Bac-Moszaszwili M., Burchart J., Głazek J., Iwanow A., Jaroszewski

W., Kotański Z., Lefeld J., Mastella L., Ozimkowski W., Ro-
niewicz P., Skupiński A. & Westwalewicz-Mogilska E. 1979:
Geological map of the Polish Tatra. 1:30,000. Wydawnictwa
Geologiczne, Warszawa.

Bather F.A. 1918: The Triassic crinoids from New Zealand, collect-

ed by Dr. C.T. Trechmann. Quart. J. Geol. Soc. London 73, 3,
291, 247—256.

Bełka Z. & Gaździcki A. 1976: Anisian foraminifers from the

High-Tatric series of the Tatra Mts. Acta Geol. Pol. 17, 4,

Beyrich E. 1857: Über die Crinoiden des Muschelkalkes. Abh.  K.

Akad. Wiss. Berlin 1857, 1, 1—49.

Boczarowski A. 2001: Isolated sclerites of Devonian non-pelmato-

zoan echinoderms. Palaeontologia Pol. 59, 3—220.

Buch v. L. 1845: Über einige merkwürdige Muschel-Reste des

oberen Italiens. Mber. Kgl.  Preuss. Akad. Wiss. Berlin 1845,

Eagle M.K. 2003: Etalian and Kaihikuan (Middle Triassic)

Crinoidea (Echinodermata: Articulata) from Caroline Cutting,
Oreti Valley, Southland, New Zealand. J. Roy.  Soc. N. Z. 33,
1, 269—299.

Gaździcki A. 1974: Rhaetian microfacies, stratigraphy and facial

development in the Tatra Mts. Acta Geol. Pol. 24, 1, 17—96.

Gaździcki A. 1978: Conodonts of the genus Misikella Kozur and

Mock, 1974 from the Rhaetian of the Tatra Mts (west Car-
pathians).  Acta Palaeont. Pol. 23, 3, 341—350.

Głuchowski E. 2002: First finding of Traumatocrinus  in the Trias-

sic of the Polish Tatra Mountains. In: Ćmiel S. (Ed.): Proceed-
ings of 22


 Field School of Silesian University Geologists.

Komisja Nauk Geologicznych Oddziału PAN w Katowicach,
Sosnowiec, 38—39 (in Polish).

Głuchowski E. & Salamon M.A. 2005: The Lower Muschelkalk

crinoids from Raciborowice, North-Sudetic Basin, SW Poland.
Geol. Quart. 49, 1, 83—92.

Goetel W. 1917: Die rhätische Stufe und der unterste Lias der sub-

tatrischen Zone in der Tatra. Extrait du Bulletin de
L’Académie des Sciences de Cracovie, série A, 1—222.

Goldfuss G.A. 1831: Petrefacta Germaniae. Vol. 1. Echinodermata.

Düsseldorf, 115—221.

Grochocka-Rećko K. 1963: Geology of Wyżnia Świstówka (West-

ern Tatra). Acta Geol.  Pol. 13, 2, 239—270 (in Polish with En-
glish summary).

Guzik K. 1963: Structure géologique des versants sud et ouest de la

Mała Świnica dans la région subtatrique de Zakopane. Acta
Geol. Pol. 13, 3—4, 425—444.

Hagdorn H. 1993: Holocrinus dubius (Goldfuss, 1831) aus dem

Unteren Muschelkalk von Rüdersdorf. In: Hagdorn H. &
Seilacher A. (Eds.): Muschelkalk. Schöntaler Symposium
1991.  Goldschneck, Stuttgart, 213.

Hagdorn H. 1995: Literaturbericht Triassic crinoids. Zbl. Geol.

Paläont. II, 1—2, 1—22.

Hagdorn H. & Głuchowski E. 1993: Palaeobiogeography and

stratigraphy of Muschelkalk echinoderms (Crinoidea, Echi-
noidea) in Upper Silesia. In: Hagdorn H. & Seilacher A.
(Eds.): Muschelkalk. Schöntaler Symposium 1991. Gold-
schneck, Stuttgart, 165—176.

Hagdorn H., Głuchowski E. & Boczarowski A. 1996: The crinoid

fauna of the Diplopora Dolomite (Middle Muschelkalk, Trias-
sic, Upper Anisian) at Piekary Śląskie in Upper Silesia. Geol.
Paläont.  Mitt.  Innsbruck 47—75.

Hagdorn H., Konrad G. & Török A. 1997: Crinoids from the Mus-

chelkalk of the Mecsek Mountains and their stratigraphical sig-
nificance.  Acta Geol. Hung. 40, 4, 391—410.

Iwanow A. 1965: La structure géologique de l’unite de Suchy

Wierch entre la vallée de Bystra et la vallée de Mała Łąka dans

les Tatras. Acta Geol. Pol. 15, 3, 393—428 (in Polish with
French summary).

Jaekel O. 1893: Über Holocrinus, W. u. Sp. aus dem unteren Mus-

chelkalk.  Sitz.  Ber.  Gesell.  Naturforsch.  Freunde  Berlin 8,

Jaglarz P. 2004: Middle Triassic evolution of the Tatricum basin in

the Kominiarski Wierch Massif (Iwaniacki Stream valley – Ko-
miniarski Wierch Mount). In: Kędzierski M., Leszczyński S. &
Uchman A. (Eds.): Geology of the Tatras – overregional sed-
imentological context. Polskie Towarzystwo Geologiczne, Cra-
cow, 47—53 (in Polish with English summary).

Klikushin V.G. 1982: Taxonomic survey of fossil isocrinids with a

list of the species found in the USSR. Geobios 15, 299—325.

Kostiukow J.M. 1963: Geological mapping of Wielka Świstówka

and the Mułowy and Litworowy cirques. Acta Geol. Pol. 13,
2, 223—238 (in Polish with English summary).

Kotański Z. 1958: Stratigraphical and palaeogeographical position

of the sub-Tatric Triassic in the Bielskie Tatry Mts. Bull. Acad.
Pol. Sci. 6, 8, 559—565.

Kotański Z. 1959a: Stratigraphy, sedimentology and palaeogeogra-

phy of the High-Tatric Triassic in the Tatra Mts. Acta Geol.
Pol. 9, 2, 113—146.

Kotański Z. 1959b: Stratigraphical sections of the High-Tatric series

in the Polish Tatra Mountains. Biul. Inst. Geol. 139, 4, 7—160
(in Polish with English summary).

Kotański Z. 1963a: Stratigraphie et lithologie du Trias subtatrique

de la région de Zakopane. Acta Geol.  Pol. 13, 2, 317—238
(in Polish with French summary).

Kotański Z. 1963b: Outline of the Triassic stratigraphy of the Zako-

pane sub-Tatric zone. Bull.  Acad. Pol.  Sci. 11, 2, 128—141.

Kotański Z. 1965: Analogie lithologiques entre le Trias de Tatra et

celuides Alpes orientales. Rocznik Pol. Tow. Geol. 35, 2,
143—162 (in Polish with French summary).

Kotański Z. 1973a: Ammonites, nautiloids and daonelles from the

upper sub-Tatric Triassic in the Tatra Mts. Rocznik Pol. Tow.
Geol. 43, 4, 440—451.

Kotański Z. 1973b: Microfacies characteristic and stratigraphical di-

vision of carbonate Triassic rocks from the Zakopane IG 1
borehole.  Biul. Inst. Geol. 265, 16, 205—228 (in Polish with
English summary).

Kotański Z. & Zawidzka K. 1979: Stratigraphic distribution of the

Triassic fauna in the Tatra Mts. In: Malinowska L. (Ed.): Atlas
of guide and characteristic fossils; Mesozoic, Triassic. Wy-
dawnictwa Geologiczne, Warszawa, 37 (in Polish).

Kristan-Tollmann E. 1988: Unexpected communities among the

crinoids within the Triassic Tethys and Panthalassa. In: Burke
R.D., Mladenov P.V., Lambert P. & Parsley R.L. (Eds.): Echi-
noderm biology. Balkema,  Rotterdam, 133—142.

Kristan-Tollmann E. & Spendlingwimmer R. 1975: Crinoiden im

Anis (Mitteltrias) der Tatriden der Hainburger Berge (Nied-
erösterreich). Mitt. Österr. Geol. Gesell. 68, 59—77.

Kristan-Tollmann E. & Tollmann A. 1967: Crinoiden aus dem zen-

tralalpinen Anis (Leithagebirge, Thörler Zug und Radstädter
Tauern). Wiss. Arb.  Burgenland 36, 1—55.

Kulikowski A. 1967: The geology of Mt Nosal (Western Tatra

Mts). Acta Geol. Pol. 17, 4, 653—669.

Lefeld J. 1958: Dadocrinus grundeyi Langenhan (Crinoidea) from

the High-Tatric Middle Triassic in the Tatra Mts (Poland). Acta
Palaeont. Pol. 3, 59—74 (in Polish with English summary).

Meyer v. H. 1847: Mitteilungen an Prof. Bronn gerichtet. Frankfurt

am Main, 18 Juni 1847. N. Jb. Min. etc. 1847, 572—580.

Meyer v. H. 1849: Fische, Crustaceen, Echinodermen und andere

Versteinerungen aus dem Muschelkalk Oberschlesiens. Palae-
ontographica 1, 216—279.

Nawrocki J. & Szulc J. 2000: Magnetic polarity scale for the Roet-

ian and Muschelkalk deposits from Silesian and northern part

background image



of the Holy Cross Mts (Poland). Przegl. Geol. 3, 236—238
(in Polish with English summary).

Niedźwiedzki R. & Salamon M.A. 2002: Migration routes of the

Tethyan fauna in the eastern part of the epicontinental Ger-
manic Basin (Poland). Freiberger Forsch. C 497, 10, 1—8.

Passendorfer E. 1951: Triassic. In: Książkiewicz M. (Ed.): Regional

geology of Poland. Polskie Towarzystwo Geologiczne,
Kraków, 163—189 (in Polish).

Passendorfer E. 1983: How did the Tatra Mts originated? Wy-

dawnictwa Geologiczne, Warszawa, 1—286 (in Polish).

Picard K. 1883: Über eine neue Crinoiden-Art. aus dem Muschel-

kalk der Hainleite bei Sonderhausen. Z. Deutsch. Geol. Gesell.
35, 199—202.

Piotrowski J. 1965: Le Trias moyen et la tectonique du massif de

Kominy Tylkowe. Acta  Geol. Pol. 15, 3, 355—392 (in Polish
with French summary).

Quenstedt F.A. 1835: Über die Encriniten des Muschelkalkes.

Wiegmanns Arch. 1, 223—228.

Rabowski F. 1959: High-Tatric series in Western Tatra. Prace Instytu-

tu Geologicznego 27, 5—178 (in Polish with English summary).

Radwański A. 1968: Petrographical and sedimentological studies of

the High-Tatric Rhaetic in the Tatra Mountains. Stud. Geol.
Pol. 25, 1—146 (in Polish with English summary).

Salamon M.A. 2003: Middle Triassic crinoids (Crinoidea) from the

Holy Cross Mts. Unpubl. Ph. D. Thesis of University of Silesia,
Sosnowiec, 1—114 (in Polish).

Salamon M.A., Niedźwiedzki R. & Walter R. 2003: New data on

the Middle Triassic echinoderms from the Sudetes Mountains.
Geol.  Quart. 47, 2, 133—138.

Schmidt M. 1928: Die Lebewelt unserer Trias. Öhringen, 1—461.
Senkowiczowa H. & Kotański Z. 1979: Class Crinoidea Miller,

1821. In: Malinowska L. (Ed.): Atlas of guide and characteris-
tic fossils. Mesozoic; Triassic. Wydawnictwa Geologiczne,
Warszawa, 126—136 (in Polish).

Sochaczewski A. 1997: Middle Triassic (Ladinian?) dolomites of

the Krokiew-Palenica unit in the Filipka Valley. In: Lefeld J. &
Gaździcki A. (Eds.): LXVIII Meeting of the Polish Geological
Society.  Polskie Towarzystwo Geologiczne, Zakopane, 1—107
(in Polish).

Szulczewski M. 1963: The geology of Mała Świstówka in Western

Tatra.  Acta Geol.  Pol. 13, 2, 199—221 (in Polish with English

Trammer J. 1975: Stratigraphy and facies development of the Mus-

chelkalk in the south-western Holy Cross Mts. Acta Geol. Pol.
25, 2, 179—216.

Uhlig V. 1897: Die Geologie des Tatra Gebirges. I. Einleitung und

Stratigraphischer Theil. Denksch. Acad. Wissen. Wien. Math.
Natur.  64, 643—684.

Wachsmuth C. & Springer F. 1886: Revision of the Palaeocrinoidea

3, 2. Philadelphia, 260—262.

Zawidzka K. 1967: On the geology of the Przełęcz Sywarowa Pass

in the Western Tatras. Acta Geol. Pol. 17, 4, 623—651.

Zawidzka K. 1972:  Stratigraphic position of the Furkaska lime-

stones (Choč nappe, the Tatra Mts). Acta Geol. Pol. 22, 3,

Zawidzka K. 1975: Conodont stratigraphy and sedimentary envi-

ronment of the Muschelkalk in Upper Silesia. Acta Geol.  Pol.
25, 2, 217—257.