background image

GEOLOGICA CARPATHICA, DECEMBER 2005, 56, 6, 483—491

www.geologicacarpathica.sk

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Hauterivian calciturbidites within the Schrambach

Formation (Kaltenleutgeben section, Lunz Nappe, Northern

Calcareous Alps, Lower Austria)

ALEXANDER LUKENEDER

1

 and FELIX SCHLAGINTWEIT

2

1

Natural History Museum, Department of Geology and Paleontology, Burgasse 7, A-1010 Vienna, Austria;

alexander.lukeneder@nhm-wien.ac.at

2

Lerchenauerstr. 167, D-80935 Munich, Germany; EF.Schlagintweit@t-online.de

(Manuscript received November 10, 2004; accepted in revised form June 16, 2005)

Abstract: A single turbiditic coarse limestone layer (thickness up to 10 cm), interpreted as distal calciturbidite, is
described for the first time from the Lower Cretaceous Schrambach Formation of the Lunz Nappe (Kaltenleutgeben
section, Northern Calcareous Alps). It is composed almost exclusively of bioclasts derived from echinoids (about 50 %),
bryozoans, coralline red algae, foraminifers, and remains of stromatoporoids and belemnoids; calcareous green algae are
missing. The stratigraphic age of this layer is Late Hauterivian based on the findings of the Euptychoceras Abundance
Zone. The biota, indicate a source area in an upper slope position marking the transition to shallow-water areas. This is
the first record of a shallow-water evolution in the Northern Calcareous Alps from the time-interval between the
Barmstein limestones (Late Tithonian—Late Berriasian), the Plassen Formation (up to Early / Middle Berriasian) and the
allochthonous Urgonian limestones (since Late Barremian onwards). A relationship to equivalent biodetritus within the
Rossfeld Formation, which currently lacks biostratigraphic data, is possible. Finally, transportation from southern
directions is assumed due to the occasional occurrence of chrome spinel and the nappe tectonic position of the locality.

Key words: Hauterivian, Austria, Northern Calcareous Alps, Schrambach Formation, ammonoids, microfacies,
calciturbidites.

Introduction

The study area within the Northern Calcareous Alps was
situated on the eastern border of the Alpine-Carpathian
Block, along the western margin of the Tethys Sea, during
the Early Cretaceous as noted by many authors (for exam-
ple Cecca 1997, 1998; Vašíček & Michalík 1999; Stamp-
fli & Mosar 1999).

Lower Cretaceous pelagic sediments (e.g. Schrambach,

Rossfeld, Tannheim and Losenstein Formations) were depos-
ited on major elements of the northern tectonic units of the
Northern Calcareous Alps, such as the Ternberg, Reichram-
ing, Frankenfels, and Lunz Nappes, where they cover wide ar-
eas within the Northern Calcareous Alps (e.g. Rossfeld,
Losenstein, Schneeberg, Anzenbach, Ebenforst, and Flössel
Synclines and in several other Alpine areas of Europe (e.g.
Vocontian Basin, Dolomites, Umbria, Western Carpathians,
Gerecse and Mecsek Mountains, among others).

The earliest publications dealing with the section at

Kaltenleutgeben situated in the Flössel Syncline were by
Richarz (1905, 1908). Schwinghammer (1975) reported a
low-diversity fauna and described a section from the same
locality. The most recent contribution on the ammonoid
fauna and stratigraphy of this locality was by Lukeneder
(2003). He proposed a system of several ammonoid
‘abundance zones’ for a detailed stratigraphy of the Low-
er Cretaceous sediments. The benthic foraminifers of the
Kaltenleutgeben section were investigated by Weidich
(1990: p. 62), who noted an impoverished microfauna

consisting of some Lenticulina and Spirillina and scarce
radiolarians, which did not allow precise dating. The out-
crop and logs described in the present paper are visible in
the quarry today and lie 100 meters above the location de-
scribed by Schwinghammer (1975).

Geological setting

The investigated outcrop is an abandoned quarry at the

Flösselberg near Kaltenleutgeben (Fig. 1). It is situated in
the Lunz Nappe, one of the Bajuvaric tectonic units of the
Northern Calcareous Alps (Lukeneder 1999, 2003) con-
sisting of steep synclines and anticlines (e.g. Höllenstein
Anticline, Flössel Syncline). The Flössel Syncline at the
Flösselberg is formed of Upper Triassic dolomite and the
Kössen Formation, followed by a reduced Jurassic succes-
sion consisting of the Ruhpoldinger Radiolarite and the
Allgäu Formation (see also Toula 1886; Spitz 1910;
Rosenberg 1965; Plöchinger & Prey 1993). The core of
the Flössel Syncline consists of the Lower Cretaceous
Schrambach Formation, which occurs throughout the
Northern Calcareous Alps (Fig. 2). Within the Lunz Nappe
the Schrambach Formation comprises Upper Valanginian
to Lower Barremian sediments.

The Lower Cretaceous Schrambach Formation is a deep-

water limestone / marl sequence marked by intercalated
turbiditic sandstones. A short-term sedimentation is pro-
posed for the turbidite sandstone layers, whereas the

background image

484

LUKENEDER and SCHLAGINTWEIT

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

limestone / marl rhythmites reflect the ‘normal’ deep-water
limestone sedimentation rates.

The dark marls and grey-spotted limestones are inten-

sively bioturbated biogenic mudstones to wackestones.
The occurrence of chrome spinel in the terrigenous sand-
stones supports the assumption that the turbiditic interca-
lations in the Schrambach Formation of the Reichraming
Nappe (Upper Austria), are equivalent to the Lunz Nappe.
It also supports the interpretation that the turbiditic sand-
stones were derived from a more southerly source area
(Decker et al. 1987; Vašíček et al. 1994; Vašíček & Faupl
1998).

The paleogeographical reconstruction of the investigat-

ed area for the Early Cretaceous shows that the sedimenta-
tion of the turbiditic sandstones in the internal and eastern
parts of the Northern Calcareous Alps (southernmost parts
of the Bajuvaric Unit) may be related to an uplift of the
most southern parts. This reflects either the beginning of
the subduction of the Penninic Ocean in the north and / or

silty marlstones accompanied by sandstones and

a single calciturbidite bed. The CaCO

3

-content of the lime-

stones and marly limestones varies between 56 and 89 %.
TOC values range from 0.2 up to 7.3 % and the sulphur con-
tents attain 0.1 to 1.5 mg / g. The highest TOC values of
about 7.3 % occur in distinct single, black to dark-grey lime-
stone beds which indicate dysoxic to anoxic deposits.

The intercalated calciturbidite bed occur in an irregular

layer from 2—10 cm in thickness and shows wavy, irregular
boundaries. Lower boundary is sharp, whereas the top of
the layer passes more gradually into a ‘normal micritic
limestone bed’. This redeposited layer shows the typical
brightness of echinoderm debris on their broken surfaces.

The following data concerning microfacies and micro-

paleontology refer to sample Ka 110, from which 20 thin-
sections were prepared. The material examined is stored in
the paleontological collection of the Natural History Mu-
seum, Vienna, Austria (NHMW).

The calciturbidite bed consists of bioclastic grainstones.

Biogenic components (0.5 to 1.0 mm in diameter) are domi-

the obduction of oceanic crust of the former
Vardar Ocean at the boundary of the Austroal-
pine / Southern Alps (e.g. Schlagintweit 1991).

The basal part of the succession is charac-

terized by its higher content of sandy inter-
calations (Fig. 2). Based on the occurrences
in the western parts of the NCA, this devel-
opment been unfortunately designated as
Rossfeld Formation (Geol. Map 1:50,000,
sheet 58 Baden; Schnabel 1997). According
to our interpretation, however, the proximal
Rossfeld Formation with a deep-water clast
facies is situated more to the south (southern
parts of the Reichraming Nappe, and not in
the northernmost parts of the NCA). Our in-
terpretation is in agreement with Vašíček et
al. (1994), who included the limestones with
turbiditic sandstone intercalations into the
Schrambach  Formation (located in the north-
ern Reichraming Nappe), and not into the
Rossfeld Formation (Schnabel 1997).

Lithology and microfacies of the

calciturbidites

The Upper Hauterivian succession of the

easternmost parts of the Northern Calcareous
Alps was deposited on an unstable shelf set-
ting characterized by thick limestone / marl
units reflecting transgressive histories punctu-
ated by tectonic events, as shown by the depo-
sition of sandstones and calciturbidites.

At the Kaltenleutgeben section, the Lower

Cretaceous is represented by a single formation:
the Schrambach Formation (approx. 150 m), with
a stratigraphic range of Late Valanginian—Early
Barremian. The section consists of grey marly
limestones, ocher calcareous marls and grey

Fig. 1. The excavation site south of Kaltenleutgeben. a  –  The rectangle indi-
cates the area of sketch map below. b  –  Horizontal projection of the outcrop
area around Kaltenleutgeben with indicated position of the calciturbidite bed,
black cross near log E (after Lukeneder 2003).

background image

485

HAUTERIVIAN CALCITURBIDITES WITHIN THE SCHRAMBACH FORMATION (LOWER AUSTRIA)

136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151

Fig. 2. Composite lithological log of the whole Schrambach Formation from the section Kaltenleutgeben with indicated stratigraphy
and positions of the calciturbidite bed (black cross in log E).

nated by echinoid fragments (about 50 %), bryozoans,
mollusc and brachiopod shells, benthic foraminifers, ser-
pulid tubes, calcareous algae (e.g. Corallinaceae), and re-
mains of pharetronid sponges and stromatoporoids (Figs. 3
and 4). Due to the typical orthogonal microstructure (with
dark median line) the stromatoporoid fragments can prob-
ably be referred to Actinostromaria. Sections of belem-
noids are also present. Cross-sections are comparably
frequent of Carpathiella triangulata Mišík, Soták et Zie-

gler, interpreted as serpulid tubes (Mišík et al. 1999;
Schlagintweit et al. 2003b).

The low-diversity microfauna includes textulariids, aren-

aceous encrusting foraminifers, Charentia sp. and calcare-
ous foraminifers, most typically Lenticulina sp., Spirillina
sp. and more rarely Neotrocholina sp. Amongst the calcar-
eous algae, the absence of green algae such as dasyclad-
ales is striking. Instead, fragments of coralline red algae
including  Parakymalithon phylloideum (Bucur et Dra-

background image

486

LUKENEDER and SCHLAGINTWEIT

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

gastan) Moussavian, peyssonelliacean red algae with
Polystrata alba (Pfender) Denizot and, scattered remains
of  Marinella lugeoni Pfender, which is interpreted as an
ancestral Rhodophyceae by Leinfelder & Werner (1993)
occur (Fig. 4). In addition scattered fragments of the colo-
nial microorganism incertae sedis Koskinobullina socialis
Cherchi et Schroeder were observed.

Some echinoid fragments and bryozoan skeletons show

impregnation by glauconite, which can also occur as sin-
gle grains. Occasionally, small grains of chrome spinel are
visible. Due to the fine grain-size and the comparably
good sorting, the layer of the Kaltenleutgeben section are
recognized as a distal calciturbidite.

Stratigraphy

Twenty-three genera of Lytoceratina, Phylloceratina,

Ammonitina and Ancyloceratina (suborders), comprising
25 different species, were reported from the whole Kalten-
leutgeben section in a recent paper by Lukeneder (2003).
The cephalopods are especially enriched in certain levels
(ammonoid “abundance zones”; see Salvador 1994; Stein-
inger & Piller 1999). The following important genera were
determined: 

Lytoceras, Leptotetragonites, Phylloceras,

Phyllopachyceras, Oosterella, Olcostephanus, Haploceras,
Kilianella, Thurmanniceras, Eleniceras,  Spitidiscus,  Acan-
thodiscus, Leopoldia, Neocomites, Barremites, Pulchellia,
Himantoceras, Crioceratites, Bochianites, Karsteniceras,
Euptychoceras,  Hamulina and Anahamulina. For a detailed
list of the ammonoid species see Lukeneder (2003).  Most
ammonoid species are of poor biostratigraphic use.

According to Lukeneder (2003) the Euptychoceras-

Abundance Zone hints at a Late Hauterivian age for the
interval around the calciturbidte layers (see also Vašíček
et al. 1994, ‘Euptychoceras beds’). Vašíček et al. (1994)
reported abundant occurrences of Euptychoceras  from
the  Plesiospitidiscus ligatus Zone from the central West-
ern Carpathians. Similar occurrences of euptychoceratids
were stated from the Reichraming Nappe (Upper Austria)
by Vašíček & Faupl (1999). According to the latter au-
thors the Euptychoceras-abundance in the Reichraming
Nappe is located in the Subsaynella sayni Zone. At the
investigated section the Euptychoceras-Abundance  Zone
is located between the Olcostephanus (J.) jeannoti-
Abundance Zone and the Crioceratites krenkeli-Abun-
dance Zone (Fig. 5). Olcostephanus (J.) jeannoti is the
index fossil of the jeannoti Subzone within the Criocer-
atites loryi Zone (middle Early Hauterivian). Criocera-
tites loryi (Sarkar), the index ammonite for the loryi  Zone
and for the loryi  Subzone, was also detected about
40 meters below the calciturbidites. The occurrence of
Crioceratites krenkeli hints at the Pseudothurmannia
angulicostata Zone (latest Hauterivian) (Hoedemaeker et
al. 2003).

Based on the latter implementations and the intermedi-

ate position of the Euptychoceras-Abundance Zone, the
intercalated calciturbidite bed is assumed to be of early
Late Hauterivian age.

The microfossils resedimented in the calciturbidite do

not allow a precise dating. Only the occurrence of the cor-
allinaceans led to a minimum age of Early Hauterivian,
which is the oldest indicator so far recorded in the litera-
ture (Arias et al. 1995; Aguirre et al. 2000). Parakymali-
thon phylloideum (Bucur et Dragastan) Moussavian was
so far only known from Barremian to Aptian strata (Bucur
& Dragastan 1986; Moussavian 1987). Recent findings
presented in this paper make it necessary to enlarge its
stratigraphic range up to the Late Hauterivian. The species
has already been recorded by Moussavian (1987) from the
upper portion of the Rossfeld Formation, assigned to the
Late  Barremian—Early Aptian.

Discussion and comparisons

As reported by Faupl (1979), three turbidite intervals oc-

cur within the Cretaceous sequence of the Austroalpine unit
during three different time periods, representing characteris-
tic phases in the Alpine Orogeny: 1 – in the lower part of
the Lower Cretaceous, 2 – in the uppermost part of the
Lower Cretaceous to mid-Cretaceous and 3 – within the
Upper Cretaceous (Gosau) (see also Decker et al. 1987).

In the general paleogeographical and biostratigraphic

framework, the calciturbidite layer of the Kaltenleutgeben
section enables a comparison with the Barmstein lime-
stones, the Rossfeld Formation (see also Vašíček & Faupl
1998), and allodapic Urgonian limestones. It is notewor-
thy that no records of a shallow-water facies have been re-
ported in the Northern Calcareous Alps between the
Barmstein Limestones (Late Tithonian—Early / Middle Ber-
riasian according to Gawlick et al. in print; after Boorová
et al. 1999 up to Late Berriasian; see also Lukeneder et al.
2003) and the oldest allodapic Urgonian limestones of
Late Barremian age (Hagn 1982).

The Barmstein Limestones are mass-flow deposits that

occur as intercalations in the basinal facies of the Oberalm
Formation of the Tauglboden Basin (Steiger 1981; Gawlick
et al. in print). It belongs tectonically to the Lower Tyrolic
Unit sensu Gawlick & Frisch (2003). The redeposited car-
bonate material of the Barmstein Limestones has been de-
rived from the Trattberg rise at the boundary of the
Lower—Upper Tyrolic Nappe (for explanation see Gawlick
& Frisch 2003). The Barmstein Limestones are character-
ized by densely packed grainstones (lithoclasts and bio-
clasts), predominantly of the Plassen Formation of different
facies zones (slope, platform margin, back-reef, closed la-
goon). At the type-locality, the Barmstein near Hallein
(Salzburg), extraclasts of older strata of Jurassic and Late
Triassic age also occur.

Remains of coralline red algae such as Sporolithon rude

(Lemoine), bryozoans, and echinoids are known as bio-
clasts in sandstones of the Rossfeld Formation (Schlagint-
weit 1991: p. 54). It is worth mentioning that lenticulinids
and neotrocholinids have already been recorded by Faupl
& Tollmann (1979) from the marly lower parts of the Ross-
feld Formation. The occurrence of calcareous algae in the
Schrambach Formation could either be derived from a

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

background image

487

HAUTERIVIAN CALCITURBIDITES WITHIN THE SCHRAMBACH FORMATION (LOWER AUSTRIA)

Fig. 3. Position and outcrop situation at the Kaltenleutgeben locality. Facies and abundant fossil groups of the calciturbidite (thin sections).
1 – Overview of the Hauterivian limestones of the Kaltenleutgeben outcrop. Calciturbidites are situated at the right margin of the photograph.
2 – Detailed position of the calciturbidite bed. 3 – Enlarged area of Fig. 2 with calciturbidite layer in the middle. 4 – Polished section of the
calcitutbidite bed with transition in marly limestone to the top; 2004z0168 / 0001.  5 – Enlarged thin sections of the calcitutbidite bed with
bottom and top; 2004z0155 / 0004. 6 – Top transitional section of the calcitutbidite bed. Normal grading; 2004z0164 / 0001.  7 – Echinoid
spine; 2004z0157 / 0001. 8 – Echinoid spine; 2004z0156 / 0001. 9 – Crinoid brachial; 2004z0165 / 0001. 10 – Belemnite rostrum;
2004z0166 / 0001.  11 – Lamellaptychus sp.; 2004z0155 / 0002. 12 – Bottom of the calciturbidite bed in thin section. Note sharp bound-
ary; 2004z0155 / 0004. 13 – Bryozoan colony at the bottom of the calciturbidite bed; 2004z0160 / 0001.  14 – Top transitional section of
the calcitutbidite bed. Normal grading; 2004z0155 / 0003. 15 – Crinoid stem fragment; 2004z0157 / 0002. 16 – Bottom transitional sec-
tion of calcitutbidite bed. Note sharp boundary; 2004z0159 / 0001. Scale bar: Figs. 4—16 = 0.2 mm.

268
269
270
271
272
273
274
275
276
277

background image

488

LUKENEDER and SCHLAGINTWEIT

278
279
280
281
282
283
284

Fig. 4. Microfacies and micropaleontology of the Upper Hauterivian calcitutbidite of the Kaltenleutgeben section. 1 – Benthic foramini-
fer  Charentia cf. cuvillieri Neumann; 2004z0160 / 0002. 2 – Ancestral Rhodophyceae Marinella lugeoni Pfender; 2004z0161 / 0001.
3 – Benthic foraminifer Neotrocholina sp.; 2004z0155 / 0001. 4 – Coralline red alga Parakymalithon phylloideum (Bucur et Dragastan)
Moussavian; 2004z0167 / 0001. 5 – Benthic foraminifer Neotrocholina sp.; 2004z0161 / 0002. 6 – Problematic serpulid tube Car-
pathiella triangulata Mišík, Soták et Ziegler; 2004z0161 / 0003. 7 – Arenaceous foraminifer; 2004z0160 / 0003. 8 – Bryozoan col-
ony; 2004z0164 / 0002. 9 – Bryozoan colony; 2004z0165 / 0002. 10  – Lithoclast containing calpionellid; 2004z0162 / 0001.
11 – Eroded belemnite rostrum; 2004z0163 / 0001. 12 – Fragmented belemnite rostrum; 2004z0160 / 0004. 13 – Brachiopod shell;
2004z0166 / 0002.   Continued on next page.                       

background image

489

HAUTERIVIAN CALCITURBIDITES WITHIN THE SCHRAMBACH FORMATION (LOWER AUSTRIA)

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

319
320
321
322
323
324
325
326
327
328
329
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

Fig. 5. The suggested stratigraphic range of the calciturbidites (in
grey) in the Flössel Syncline. Table from Hoedemaeker et al.
(2003, with modifications).

shallow-water facies situated towards the south of the depo-
sitional area of the Rossfeld Formation or can be interpreted
as a lateral influx from the internal Late Barremian—Albian
“Urgonian platform”. The latter possibility was favoured by
Schlagintweit (1991) because no stratigraphic data were
available from these sandstones and a time-equivalent posi-
tion to the allochthonous Urgonian limestones has been

assumed. The calciturbidites of the Schrambach Formation
from Kaltenleutgeben, however, are of Hauterivian age
and, thus, older than the first records of the Urgonian plat-
form known so far as Late Barremian (Hagn 1982). The Ur-
gonian platform contains diverse benthic foraminifers (e.g.
orbitolinids, lituolids, and miliolids), calcareous green al-
gae (Dasycladales, Halimedaceae), and remains of corals,
and, thus, differs from the calciturbidites of the Schram-
bach Formation from Kaltenleutgeben. Whereas the bio-
genic composition of the calciturbidite layer of the
Kaltenleutgeben section reflects foramol type sediments,
the allodapic Urgonian limestones belong to the chloro-
zoan type sediments according to the classification of
Less & Buttler (1972) and Carannante & Simone
(1987). These differences, however, should not be over-
estimated because they may merely reflect different wa-
ter depths of the primary depositional area in connection
with variable siliciclastic influx. Due to the total ab-
sence of dasycladalean green algae (approx. 20 m water
depth), the dominance of echinoids and bryozoans, and
the abundances of lenticulinid foraminifers, an upper
circalittoral (e.g. Masse 1988) source area (= upper slope)
is assumed. In contrast, the allodapic Urgonian lime-
stones derived from outer platform or platform margin
position (= external infralittoral) (Fig. 6).

This yields two possibilities for the origin of the calcitur-

bidites of the Schrambach Formation from Kaltenleutge-
ben: a shallow-water facies south of the depositional realm

Fig. 6. Model for the paleogeographical transect and sedimentary origin of the calciturbidite layer of the Schrambah Formation at Kalten-
leutgeben during the Hauterivian (model adapted from Faupl & Tollmann 1979). K – source area, K1 – final deposition after transport.

312
313
314
315
316
317
318

Fig. 4.  Continuation. 14 – Brachiopod shell; 2004z0158 / 0001. 15  – Bryozoan colony; 2004z0157 / 0003. 16 – Arenaceous foramini-
fer; 2004z0169 / 0001. 17 – Arenaceous foraminifer; 2004z0169 / 0002. 18 – Lenticulina  sp.; 2004z0169 / 0003. 19 – Ammodiscus sp.;
2004z0169 / 0004.  20 – Gastropod; 2004z0169 / 0005. 21 – Arenaceous foraminifer, 2004z0169 / 0006. 22 – Arenaceous foraminifer;
2004z0169 / 0007.  23 – Lenticulina sp.; 2004z0169 / 0008. 24 – Ammodicus sp.; 2004z0169 / 0009. 25 – Gastropod, 2004z0169 / 0010.
26 – Sponge skeleton; 2004z0169 / 0011. 27 – Sponge skeleton; 2004z0169 / 0012. 28  – Sponge spiculae; 2004z0169 / 0013.
29 – Bryozoan colony; 2004z0169 / 0014. 30 – Gastropod; 2004z0169 / 0015. Scale bar: Figs. 1—15 = 0.2 mm. All specimens (exclusive-
ly thin sections) were coated with gold before photographing (REM). All specimens are stored at the Museum of Natural History (Burgring 7,
A-1010, Vienna).

background image

490

LUKENEDER and SCHLAGINTWEIT

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

of the Rossfeld Formation; or an initial stage of the car-
bonatic Urgonian platform that was formed by shallow-
ing similar to the Upper Jurassic Plassen Formation
(Schlagintweit et al. 2003a).  The latter drowned during
the Berriasian, as evidenced by the Upper Berriasian
calpionellid-rich limestones of the oblonga Subzone on
top of the Plassen Formation (Schlagintweit et al. 2004).

Unfortunately, information about the clasts of the

coarse-grained upper Rossfeld Formation are not
available until now. Faupl & Tollmann (1979) men-
tioned only reworked sandstones from the lower Ross-
feld Formation, and Schweigl & Neubauer (1997: p. 333)
indicate Triassic and Jurassic clasts “of the Tyrolic- or Up-
per Juvavic units”, and shale clasts of Permian Haselgebirge
or Triassic Hallstatt limestones of the “Lower Juvavic unit”.

Conclusions

In some cases, such calciturbidite material together

with coarse clasts from conglomerates – can be the
only relics of sedimentary successions that have totally
eroded during orogenesis (e.g. Urgonian platform). The
intercalations can also provide useful information on
the platform basin transitions and stratigraphic correla-
tions between both. Our results show that both, basin
and shallow-water facies can be developed throughout
the Cretaceous and especially in the Lower Cretaceous
of the Northern Calcareous Alps. In siliciclastic-influ-
enced successions, however, the stratigraphic identifi-
cation will become problematic, whereas especially in
carbonate resediments, stratigraphically significant shal-
low-water microfossils can be expected. Generally, in
more coarse-grained proximal gravity flow deposits, the
identification of microfossils and lithoclasts is much
easier than in distal portions, which often contain little
or no information on the biostratigraphy or lithological
composition of the source areas. In this paper new as-
pects for the correlation between Lower Cretaceous am-
monoids and microfossils are given and show the
enhanced value of ammonoid marker-beds (‘abundance
zone’) for the stratigraphy of geodynamic processes.
The cephalopod fauna at the outcrop covers exclusive-
ly forms of the Mediterranean Province, which are typi-
cal for the Northern Calcareous Alps.

The Upper Hauterivian calciturbidites of Kaltenleutge-

ben are the first evidence for the existence of a shallow-wa-
ter facies in the time interval between the “ending” of the
Plassen Formation (Early / Middle Berriasian) and the “be-
ginning” of Urgonian type facies, dated as Late Barremian.

With respect to formal lithostratigraphic definitions,

calcareous turbiditic layers are not known from the Ber-
riasian type-locality of the Schrambach Formation
(Rasser et al. 2003). As a consequence of these observa-
tions, the formal lithostratigraphic definition of the
Schrambach Formation has to be enlarged.

Acknowledgments: 

Thanks are due to the Austrian Sci-

ence Fund (FWF) for financial support in project FWF

P16100-N06. Our sincere thanks are extended to Herbert
Summesberger (Vienna). The author is grateful to Peter
Faupl (Vienna), Zdenek Vašíček (Ostrava) and Jozef
Michalík (Bratislava) for their valuable comments which
helped improving the quality of the paper. Thin-sections
were done by Franz Mayer (Vienna).

References

Aguirre J., Riding R. & Braga J.C. 2000: Diversity of coralline

red algae: origination and extinction patterns from the Early
Cretaceous to the Pleistocene. Paleobiol. 26, 4, 651—667.

Arias C., Masse J.-P. & Vilas L. 1995: Hauterivian shallow marine

calcareous biogenic mounds: S.E. Spain. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 119, 3—17.

Boorová D., Lobitzer H., Skupien P. & Vašíček Z. 1999: Bios-

tratigraphy and facies of upper Jurassic-Lower Cretaceous
pelagic carbonate sediments (Oberalm-, Schrambach- and
Rossfeld-Formation) in the Northern Calcareous Alps, South
of Salzburg. Abh. Geol. B.-A. 56, 2, 273—318.

Bucur I.I. & Dragastan O. 1986: Archaeolithothamnium phyl-

loideum, nouvelle espèce de Corallinacée du Crétacé in-
férieur de l’Ouest de la Roumania. Rev. Micropaleont. 28,
4, 227—232.

Carannante G. & Simone L. 1987: “Temperate” versus “tropical”

Cretaceous carbonate platforms in Italy. Rend. Soc. Geol.
Ital.  9, 1986, 153—156.

Cecca F. 1997: Late Jurassic and Early Cretaceous uncoiled am-

monites: trophism-related evolutionary processes. C.R. Acad.
Sci. Paris, Sér. II 325, 629—634.

Cecca F. 1998: Early Cretaceous (pre-Aptian) ammonites of the

Mediterranean Tethys: Palaeoecology and palaeobiography.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 138, 305—323.

Decker K., Faupl P. & Müller A. 1987: Synorogenetic sedimenta-

tion on the Northern Calcareous Alps during the Early Creta-
ceous. In: Flügel H.W. & Faupl P. (Eds.): Geodynamics of
the eastern Alps. Wien, 126—141.

Faupl P. 1979: Turbidite series within the Cretaceous sequence of

the Austroalpine unit and their paleogeographical signifi-
cance. In: Wiedmann J. (Ed.): Aspekte der Kreide Europas.
IUGS Series A 6, Stuttgart, 403—411.

Faupl P. & Tollmann A. 1979: Die Roßfeldschichten: Ein Beispiel

für Sedimentation im Bereich einer tektonisch aktiven Tief-
seerinne aus der kalkalpinen Unterkreide. Geol. Rdsch. 68, 1,
93—120.

Hagn H. 1982: Neue Beobachtungen in der Unterkreide der

Nördlichen Kalkalpen (Thierseer Mulde SE Landl, Kalkal-
pine Randschuppe SW Bad Wiessee). Mitt. Bayer. St.-Samml.
Paläont. Hist. Geol. 22, 117—135.

Gawlick H.-J. & Frisch W. 2003: The Middle to Late Jurassic carbon-

ate clastic radiolaritic flysch sediments in the Northern Calcare-
ous Alps: sedimentology, basin evolution, and tectonics – an
overview.  Neu. Jb. Geol. Paläont. Abh. 230, 163—213.

Gawlick H.-J., Schlagintweit F. & Missoni S. in print: Die Barm-

steinkalke der Typlokalität nordwestlich Hallein (hohes Ti-
thonium bis tieferes Berriasium; Salzburger Kalkalpen,
Deutschland, Österreich) – Sedimentologie, Mikrofazies,
Stratigraphie und Mikropaläontologie: neue Aspekte zur En-
twicklungsgeschichte der Ober-Jura-Karbonatplattform und
der tektonischen Interpretation der Hallstätter Zone von Hal-
lein - Bad Dürrnberg. Neu. Jb. Geol. Paläont. Mh.

Hoedemaeker P.J., Reboulet St., Aguirre-Urreta M., Alsen P.,

Aoutem M., Atrops F., Barrangua R., Company M., Gonza-

406
407
408
409
410
411
412
413

background image

491

HAUTERIVIAN CALCITURBIDITES WITHIN THE SCHRAMBACH FORMATION (LOWER AUSTRIA)

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

les C., Klein J., Lukeneder A., Ploch I., Raisossadat N.,
Rawson P., Ropolo P., Vašíček Z., Vermeulen J. & Wippich
M. 2003: Report on the 1

st

 International Workshop of the

IUGS Lower Cretaceous Ammonite Working Group, the
‘Kilian Group’ (Lyon, 11. July 2002). Cretaceous Research
24, 89—94.

Leinfelder R.R. & Werner W. 1993: Systematic position and

palaeoecology of the Upper Jurassic to Tertiary alga Marinel-
la lugeoni Pfender. Zitteliana  20, 105—122.

Less A. & Buttler A.T. 1972: Modern temperate-water and warm-

water shelf carbonate sediments contrasted. Marine Geol. 13,
67—73.

Lukeneder A. 1999: Excursion-guide to the Lower Cretaceous se-

quence of the Flösselberg Syncline (Lower Austria). 5

th

 Inter-

national Symposium “Cephalopods – Present and Past“,
Wien, 1—17.

Lukeneder A. 2003: Ammonoid stratigraphy of Lower Cretaceous

successions within the Vienna Woods (Kaltenleutgeben sec-
tion, Lunz Nappe, Northern Calcareous Alps, Lower Aus-
tria). In: Piller W.E. (Ed.): Stratigraphia Austriaca. Österr.
Akad. Wiss. Schriftenr. Erdwiss. Komm. 16, Wien, 165—191.

Lukeneder A., Krystyn L., Rasser M.W. & Märzendorfer G. 2003:

A unique ammonite fauna from the Upper Jurassic Loser sec-
tion (Northern Calcareous Alps, Salzkammergut). In: Piller
W.E. (Ed.): Stratigraphia Austriaca. Österr. Akad. Wiss.
Schriftenr. Erdwiss. Komm. 16, Wien, 217—229.

Masse J.-P. 1988: L’étagement bionomique des milieux benthiques

néritiques actuels: Signification bathymétrique et implications
paléobathymétriques.  Géol. Méditerr. 15, 1, 91—102.

Mišík M., Soták J. & Ziegler V. 1999: Serpulid worms Mercierella

Fauvel,  Durandella Dragastan and Carpathiella nov. gen.
from the Jurassic, Cretaceous and Paleogene of the Western
Carpathians.  Geol. Carpathica 50, 4, 305—312.

Moussavian E. 1987: Parakymalithon, eine neue Gattung der Cor-

allinaceen (Rhodophyceae) aus der Unterkreide. Facies  16,
187—194.

Plöchinger B. & Prey S. 1993: Der Wienerwald. Sammlung Geol.

Führer 59, Berlin-Stuttgart, 1—168.

Rasser M.W., Vašíček Z., Skupien P., Lobitzer H. & Boorová D.

2003: Die Schrambach-Formation an ihrer Typlokalität (Unt-
er-Kreide, Nördliche Kalkalpen, Salzburg): Lithostratigra-
phische Formalisierung und „historische“ Irrtümer. In: Piller
W.E. (Ed.): Stratigraphia Austriaca. Österr. Akad. Wiss.
Schriftenr. Erdwiss. Komm. Wien, 16, 193—216.

Richarz P.S. 1905: Die Neokombildungen bei Kaltenleutgeben.

Jb. Geol. R.-A. 54, 343—358.

Richarz P.S. 1908: Ein neuer Beitrag zu den Neokombildungen

bei Kaltenleutgeben. Verh. Geol. R.-A. 1908, 312—320.

Rosenberg G. 1965: Der kalkalpine Wienerwald von Kalten-

leutgeben (NÖ und Wien). Jb. Geol. B.-A. 108, 115—153.

Salvador A. 1994: International Stratigraphic Guide (A Guide to

Stratigraphic Classification, Terminology and Procedure). 2

nd

Ed., XIX + 214 Intern. Union Geol. Sci. Geol. Soc. Amer.

Schlagintweit F. 1991: Allochthone Urgonkalke im Mittleren Ab-

schnitt der Nördlichen Kalkalpen: Fazies, Paläontologie und
Paläogeographie. Münchner Geowiss. Abh. A 20, 1—120.

Schlagintweit F., Gawlick H.-J. & Lein R. 2003a: Die Plassen-For-

mation der Typlokalität (Salzkammergut, Österreich) – neue
daten zur fazies, sedimentologie und stratigraphie. Mitt. Ge-
sell. Geol. Bergbaustud. Österr. 46, 1—34.

Schlagintweit F., Gawlick H.-J. & Sanders D. 2003b: Serpulid

tubes of the genus Carpathiella Mišík, Soták & Ziegler, 1999
from the Upper Jurassic to Paleogene of the Northern Calcar-
eous Alps (Austria, Germany). Mitt. Gesell. Geol. Berg-
baustud. Österr. 46, 91—110.

Schlagintweit F., Gawlick H.-J. & Lein R. 2004: Die Bedeutung

der pelagischen Ober-Berriasium Sedimente der Über-
lagerung der Plassen-Formation (Kimmeridgium bis Unter-
Berriasium) der Typlokalität (Plassen bei Hallstatt,
Österreich) für die Rekonstruktion der Entwicklungsge-
schichte der Ober-Jura / Unter-Kreide Flachwasserkarbonat-
plattform in den Nördlichen Kalkalpen. Ber. Inst. Erdwiss.
Karl-Franzens-Univ. Graz 9, 361—363.

Schnabel W. 1997: Geologische Karte der Republik Österreich

1:50,000, 58 Baden. Geol. B. A., Wien.

Schweigl J. & Neubauer F. 1997: New structural, sedimentologi-

cal and geochemical data on the Cretaceous geodynamics of
the central Northern Calcareous Alps (Eastern Alps). Zbl.
Geol. Paläont. Teil I, 1996, 329—343.

Schwinghammer R. 1975: Stratigraphie und Fauna des Neokoms

von Kaltenleutgeben, NÖ. Sitz.-Ber. Österr. Akad. Wiss.,
Math.-Naturw. Kl., Abt. 1, 183, 149—158.

Spitz A. 1910: Der Höllensteinzug bei Wien. Mitt. Geol. Gesell.

Wien 3, 315—434.

Stampfli G. & Mosar J. 1999: The making and becoming of Apulia.

Mem. Sci. Géol. Univ. Padova. Spec. Vol. 51, 1, 141—154.

Steiger T. 1981: Kalkturbidite im Oberjura der Nördlichen Kalkalpen

(Barmsteinkalke, Salzburg, Österreich). Facies 4, 215—348.

Steininger F.F. & Piller W.E. 1999: Empfehlungen (Richtlinien)

zur Handhabung der stratigraphischen Nomenklatur. Cour.
Forschungsinst. Senckenberg 209, 1—19.

Toula F. 1886: Mittelneokom am Nordabhange des Großen Flössel-

berges bei Kaltenleutgeben. Verh. Geol. R.-A. 1886, 189—190.

Vašíček Z. & Faupl P. 1998: Late Valanginian cephalopods in re-

lation to the palaeogeographic position of the Rossfeld and
Schrambach Formation of the Reichraming Nappe (Northern
Calcareous Alps, Upper Austria). Zbl. Geol. Paläont.  Teil I,
H. 11, 12, 1421—1432.

Vašíček Z. & Michalík J. 1999: Early Cretaceous ammonoid paleo-

biogeography of the west Carpathian part of the Paleoeurope-
an shelf margin. Neu. Jb. Geol. Paläont. Abh. 212, 241—262.

Vašíček Z., Michalík J. & Reháková D. 1994: Early Cretaceous

stratigraphy, palaeogeography and life in Western Car-
pathians.  Beringeria 10, 3—169.

Weidich K.F. 1990: Die kalkalpine Unterkreide und ihre Foramin-

iferenfauna.  Zitteliana 17, 1—312.