background image


Middle Miocene assemblage of insectivores from Bonanza site

near Devínska Nová Ves (Slovakia)


Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava,

Slovak Republic;

(Manuscript received October 26, 2004; accepted in revised form March 17, 2005)

Abstract: Eight taxa of insectivores (Lantanotherium aff. sansaniense, Erinaceidae gen. et spec. indet., Talpa minuta,
Storchia meszaroshi sp. nov., Plesiodimylus chantrei, Dinosorex cf. zapfei, Soricidae gen. et spec. indet., and ?Lipotyphla
gen. et spec. indet.) have been determined in the Middle Miocene micromammal assemblage from Devínska Nová
Ves – Bonanza fossil site. This Late Badenian (MN6) insectivore assemblage comprises several new faunal elements
including a new form of water-mole (Storchia meszaroshi sp. nov.). These animals inhabitated a forested coast of an
insular region neighbouring with freshwater lagoon, marsh or delta. Most of them belong to juvenile specimens.

Key words: Late Badenian, Slovakia, Devínska Nová Ves, MN6, erinaceids, talpids, dimylids, soricids.


Records of Miocene fossil insectivores are relatively fre-
quent in Europe. Mostly, only isolated teeth and bones are
found, whereas finds of well preserved entire skeletons or
larger parts of them are rather rare.

In Slovakia, only four of 13 sites with a record of Miocene

mammals also yielded remains of insectivores. The strati-
graphically youngest find is known from the Late Miocene
(MN10?) site of Dubná skala, where Pipík & Sabol (in press)
recorded only Paenelimnoecus sp. A recently found fossils
assemblage of micromammals from Borský Svätý Jur (MN9)
contains also Schizogalerix sp., Heterosorex sp., and unde-
termined talpids (Joniak 2005). The terrestrial deposits of
Devínska Nová Ves-Fissures (also known as Neudorf-Spal-
te, MN6) yielded thus far the richest insectivore assemblage,
including  Lantanotherium sansaniense,  Amphechinus in-
termedius (according to Mein & Ginsburg (2002), it is Post-
palerinaceus intermedius),  Talpa minuta,  “Scaptonyx”
edwardsi, ?Urotrichus dolichochir, Talpidae gen. et spec.
indet. I & II, Plesiodimylus chantrei, Dinosorex zapfei,  Lar-
tetium dehmi, and “Allosorex” gracilidens (Zapfe 1951;
Fejfar & Sabol in press). However, only undetermined fos-
sils of insectivores were known so far from the nearby Bo-
nanza site (Holec et al. 1987).

The site under study is located at the eastern margin of the

former Stockerau limestone quarry on the northern slope of
Devínska Kobyla Hill near Devínska Nová Ves, a suburban
part of Bratislava (a geographic co-ordinates of the site are
48°12‘ N and 17°01‘ E) (Fig. 1). It is a broad fissure situated
in the protective wall of Lower Jurassic limestone, oriented
towards the railway line from Bratislava to Prague. Marine
sands, sandstone, and large limestone boulders fill the fis-
sure (Fig. 2). A detailed description of the site has been pre-
sented by Holec et al. (1987), who also mentioned
insectivore remains from marly to sandy deposits of layers
No. 11, 12, and 13 (Fig. 2). The last research in 2001—2002

yielded eight insectivore specimens (Lantanotherium  aff.
sansaniense, Erinaceidae gen. et spec. indet., Talpa minuta,
Storchia meszaroshi sp. nov., Plesiodimylus chantrei,  Di-
nosorex  cf. zapfei, Soricidae gen. et spec. indet., and ?Lipo-
typhla gen. et spec. indet.). Many of them represent
important finds from the paleobiological and taphonomic
viewpoint (e.g. dimylid jaw with deciduous and permanent
dentition or an insectivore forelimb in life-position).

Apart from insectivore remains, transgressive sandy sedi-

ments of the fissure contain abundant marine and terrestrial
vertebrates and invertebrates (Holec et al. 1987; Špinar et al.
1993; Ivanov 1998; Koretsky & Holec 2002). The fossil as-
semblage from the Bonanza site could be important in inter-
regional correlations.

Material and methods

Former fossil remains of insectivores were collected by

amateur paleontologist Š. Meszároš in the 1980s. New ma-
terial has been found by screen washing of fossiliferous
sediments in 2002. The material under study is a part of
the fossil vertebrate collections of the Slovak National
Museum – Natural History Museum (SNM—NHM;
Meszároš’s collections), and of the Department of Geolo-
gy and Paleontology, Comenius University (DGP; new
finds) in Bratislava.

Fossils were documented by binocular magnifying Carl

Zeiss Jena, drawing apparatus Meopta, and camera Nikon
F-70, as well as scanned by SEM Philips XL30CP. They
were measured partly according to the methods of Ziegler
(1983), Reumer (1984), and de Jong (in Freudenthal
1988). All measured data are given in millimeters.

For terminology of tooth crowns, the papers of Ziegler

(1983) for erinaceids, Engesser (1980) for talpids, Bolliger
(1992) for dimylids, and Reumer (1984) for soricids are

background image

434                                                                                            SABOL

Abbreviations for the dimensions of the teeth and man-
dibles are:

H – maximum height of the tooth, HCo – height of the coro-
noid process, Hm1 – mandible height below m1 on the buc-
cal side, Hm3 – mandible height below m3 on the buccal
side, HEND – height of the entoconid, HHY – height of the
hypocone, HHYD – height of the hypoconid, HM – maxi-
mum height of the mandible, HME – height of the metacone,
HMED – height of the metaconid, HPA – height of the para-
cone, HPAD – height of the paraconid, HPR – height of the
protocone, HPRD – height of the protoconid, L – length of the
tooth or mandible, LL – length on the lingual side, LM – medial
length, LT – length of the talon, Lm1—m2 – length of m1—m2,
Lm1—m3 – length of m1—m3, TAL – length of the talonid,

Fig. 1. Location of the Bonanza site on northern slopes of Devín-
ska Kobyla Hill near Devínska Nová Ves (Neudorf) (according to
Koretsky & Holec 2002, partly modified).

TAW – width of the talonid, TRL – length of the trigonid,
TRW – width of the trigonid, W – maximum width of the
tooth, WM – medial width.

Systematic Paleontology

Family:  Erinaceidae  Fischer de Waldheim, 1817

Subfamily:  Galericinae Pomel, 1848

Tribe:  Galericini Pomel, 1848

Genus:  Lantanotherium Filhol, 1888

Lantanotherium  aff.  sansaniense (Lartet, 1851)

Figs. 3, 4

M a t e r i a l :  m1 dext. (SNM—NHM, Z-14664/1, layer

NO. 13).

D e s c r i p t i o n :  The molar is partly damaged and slight-

ly worn. The protoconid posterior crest extends behind the
metaconid, which is almost as tall as the former cusp. The
trigonid basin is narrow, relatively deep, restricted from all
sides, when a small cristid between the paraconid and the

Fig. 2. Generalized section through the sediments of Bonanza (accord-
ing to Ivanov 1998). 1 – fine limestone debris; 2 – white lime sand;
3 – disaggregating sandstone with a higher content of muscovite;
4 – solid, light yellow marlstone with a great quantity of fossils;
5 – big boulders with white lime matter; 6 – greenish sand with inter-
beds of white lime matter; 7—11 – layers with coarse-grained, disag-
gregating sandstone without fossils to the fossiliferous marl, rich in
fossils; 12 – white calciferous sandstone; 13 – yellowish-white sand
with a large quantity of fauna; 14—17 – greenish to light sandstone, the
biggest quantity of fossils is contained in the layer No. 17. a – Ho-
locene humus-carbonate soil, b – Lias limestone, c – tectonic faults.

background image


Fig. 3.  Lantanotherium aff. sansaniense (Lartet, 1851), m1
dext. (Z-14664/1), Late Badenian (MN6), Bonanza. a – buccal
view, b – lingual view, c – occlusal view.

Fig. 4. Bivariate plot of m1 length/talonid width of Lantanotherium-
species from Europe (used data: Baudelot 1972; Bolliger 1992; Ra-
beder 1973; Viret 1940; Zapfe 1951; Ziegler & Mörs 2000).

Fig. 5. Erinaceidae gen. et spec. indet., left juvenile tibia with
fragment of fibula (MS-9), Late Badenian (MN6), Bonanza.
a – medial view, b – lateral view.

metaconid bounded it on the lingual side too. The oblique
crest extends anteriorly from hypoconid top and the ento-
conid crest extends towards a narrow, deep, U-like depres-
sion. The posterior cingulid forms the entoconid. The
talonid basin is shallow. The molar dimensions are:
L = 4.30 mm, TRW = 2.40 mm, and TAW = 2.50 mm.

R e m a r k s :   Four genera of erinaceids are known from

European Middle Miocene (MN5 to MN8) – Galerix,  Lan-
tanotherium (not Lanthanotherium, according to McKenna
& Bell 1997), Mioechinus  (according to McKenna & Bell
(1997), this genus is synonymous with the genus Hemiechi-
nus Fitzinger, 1866), and Amphechinus (Ziegler 1999). The
extending protoconid posterior crest and posterior cingulid
forming the entoconid of m1 indicate Lantanotherium, dif-
fering thus from other genera as follows:

– from Galerix by the shape and larger dimensions of the


– from Mioechinus by the longer trigonid than talonid;
– from Amphechinus by smaller dimensions and propor-

tionally by the wider trigonid.

So far, six valid species of Lantanotherium are known from

the European Miocene (Ziegler & Mörs 2000). However,
only three of them – L. longirostre Thenius, 1949, L. san-
saniense (Lartet, 1851), and L. robustum Viret, 1940 – have
been found in Middle Miocene sediments (MN5—8) (Ziegler
1999). Because the tooth morphology of these species is very
similar, only the dimensions of teeth are relevant for the exact
determination. Whereas teeth of L. robustum are usually the
largest (Fig. 4), molars of L. longirostre are smaller than those
of  L. sansaniense (Ziegler & Mörs 2000). From this point of
view, the erinaceid m1 from Bonanza is the closest to the San-
san species (L. sansaniense), though it is somewhat larger. For
that reason, the find is determined as L. aff. sansaniense only.

Erinaceidae gen. et spec. indet.

Fig. 5

M a t e r i a l :  Left juvenile tibia with fragment of fibula

(DGP, MS-9, layer unknown).

D e s c r i p t i o n :   The missing proximal head of the slight-

ly S-like curved tibia was not joined with diaphysis yet. The
margo cranialis is conspicuous, but narrow. Only distal part
of the probably slender fibula is preserved, grown into the
shinbone. Both bones are separated from each other by the
spatium interosseum cruris. The dimensions are as follows:
length of the tibia is 22.75 mm, length from point of the tib-
ia-fibula symphysis to the shinbone distal epiphysis is
8.35 mm, proximal width is 2.60 mm, width of the tibia dia-
physis is 0.75 mm, and the distal width is 1.85 mm.

R e m a r k s :   Compared with tibiofibulae of extant insec-

tivores (Erinaceus concolor,  Talpa europaea,  Sorex ara-
neus, and Crocidura suaveolens), the Bonanza find most

background image

436                                                                                            SABOL

morphologically corresponds to the erinaceids, when talpid
tibiofibula is more S-like curved with mainly different mor-
phology of the proximal part and the tibia-fibula symphysis
of soricids is situated in the upper part of their straighter ti-
biofibulae. However, the tibiofibula under study is smaller
than in the extant Erinaceus, due to its juvenile character. Al-
though it does not display larger morphological differences,
more exact determination is not possible, because no other
comparative material (especially fossil one) has been seen, yet.

Family:  Talpidae Fischer de Waldheim, 1817

Subfamily:  Talpinae Fischer de Waldheim, 1817

Tribe:  Talpini Fischer de Waldheim, 1817

Genus:  Talpa Linnaeus, 1758

Talpa  minuta Blainville, 1838

Fig. 6

M a t e r i a l :  Damaged right ulna (DGP, MS-10, layer un-


D e s c r i p t i o n :   The proximal part consists of wide olecra-

non with a mediolateral fan-like tubercle. The beak-like anco-
neous process is distinct, protruding forward.  The semicircular
trochlear notch is smooth, with indistinct coronoid processes.
The bone body is laterally flattened, with robust damaged
caudal ridge. The dimensions of the bone are as follows: me-
diolateral width of the proximal part is 3.5 mm, craniocaudal
width of the proximal part is 1.00 mm, minimum width of the
bone body is 0.75 mm, height of trochlea notch is 1.20 mm,
and the width of trochlea notch in its central part is 0.75 mm.

R e m a r k s :   Although the found ulna is evidently smaller

than in the extant Talpa europaea, it does not display any
morphological differences. Furthermore, its assumed greatest
length (12—13 mm) corresponds to finds of T. minuta from Pe-
tersbuch (especially from Petersbuch 10). Despite larger di-
mensions of German samples, they do not differ from
specimens of T. minuta from the Sansan type locality and so,
the delineation of a new species or subspecies was not justi-
fied (Ziegler 2003).

Fig. 6. Talpa minuta Blainville, 1838, proximal part of the right ulna (MS-10), Bonanza. a – lateral view, b – anterior view, c – medi-
al view, d – posterior view.

In Slovakia, fossils of T. minuta were thus far known from

Devínska Nová Ves-Fissures only (Zapfe 1951). Together
with this locality, the Bonanza forms one of the easternmost
sites of this Miocene talpid species in Europe.

Subfamily:  Desmaninae Mivart, 1871

Storchia meszaroshi sp. nov.

Figs. 7, 8

D e r i v a t i o   n o m i n i s :  In honour of Mr. Štefan

Meszároš from Bratislava, discoverer of the paleontological
site Bonanza and its fossils.

H o l o t y p e :  Right hemimandible of a juvenile with still

fully unerupted p2, p3 and with m2 and m3 (SNM—NHM,
Z-14662, layer No. 13).

Type locality: Bonanza (details see in “Introduction”).
A g e :  Middle Miocene, Late Badenian (MN6, level of


D i a g n o s i s :  A small species of Storchia. Lower premo-

lars are double-rooted; p2 < p3. Lower molars are very nar-
row, m2 > m3. Oblique crest extends lingually to the
metaconid; a short metacristid is present in m2. The ento-
stylid is distinctly developed in m2 and m3.

Description of the holotype: The hemimandible an-

terior part and angular process are broken off. The masseteric
fossa is wide and shallow. The coronoid process is tall and
pointed posteriorly, whereas the condylar process is situat-
ed on the elongated ramus high above the dentary level.
Two mental foramens are situated between the posterior al-
veolus of p1 and the anterior one of p2, and below the anteri-
or alveolus of m1. The mandibular foramen is situated high,
on the level of m3. Dimensions of the mandible are as fol-
lows: HM = 6.00 mm, HCo = 4.87 mm, and Hm1 = 1.30 mm.

The dominant main cusp (protoconid?) is situated in the

anterior crown part of the still fully unerupted p2 with rela-
tively distinct lingual and posterior cingulids. The tooth is
oval in occlusal outline. The morphology of larger p3 corre-
sponds to that of p2.

background image


Lower molars are very narrow with two massive roots. A

tiny accessory cusp is situated at the paracristid of m2. The
narrow and tall metaconid is smaller than distinct proto-
conid. The two cusps are connected by the short protocris-
tid. Thus, the trigonid basin is opened on the lingual side
only. The distinct hypoconid is smaller than protoconid.
The oblique crest extends lingually to the metaconid with a
faint metacristid. Between the protoconid and hypoconid, a
deep hypoflexid without the ectostylid is situated. The
short entocristid is well developed and the postcristid con-
nects the entoconid with the hypoconid. Unlike the trigo-
nid basin, the dish-like talonid one is relatively shallow.
The distinct entostylid is present behind the entoconid. A
cingulid is well developed on the anterobuccal side. More
marked lingual cingulid is absent. Dimensions of m2 are as
follows: L = 1.41 mm, TRW = 0.71 mm, and TAW = 0.72 mm.

The protocristid of m3 extends from the protoconid to-

wards the metaconid. Trigonid basin is widely opened on the
lingual side. The oblique crest extends from the hypoconid

towards the metaconid, forming a distinct border between
the deep hypoflexid and shallow talonid basin. The entoc-
ristid and postcristid are distinctly developed. The small en-
tostylid is evident. A cingulid is markedly developed on the
anterobuccal side only. Dimensions of m3 are as follows:
L = 1.33 mm, TRW = 0.63 mm, and TAW = 0.50 mm.

Only alveoli for roots of p1, p4, and m1 are preserved. All

these missing teeth were double-rooted.

R e m a r k s :  The fossil under study represents a species

of the Desmaninae subfamily, for representatives of which
the following characters of lower molars can be generally
observed: oblique crest extends more lingually, frequent-
ly joining the metaconid; teeth are mesiodistally com-
pressed (inflated aspect); and a distinct anterobuccal
cingulid extending to the protoconid (or to the hypoflexid
resp.) is mostly present.

The Bonanza find differs from most extinct and extant

desmans (Mygatalpa,  Asthenoscapter,  Mygalea,  Theratis-
kos, Lemoynea, Archaeodesmana,  Mygalinia,  Desmana,

Fig. 7.  Storchia meszaroshi nov. sp. (Z-14662), a new species of water-mole from Upper Badenian deposits of Bonanza. a—d – right
hemimandible of a juvenile with still fully unerupted p2, p3 and with m2 and m3 (Z-14662; a, b – buccal views; c, d – lingual views).
e—h – detail view on preserved molars (e – buccal view; f – lingual view; g, h – occlusal views).

background image

438                                                                                            SABOL

and  Galemys) by smaller dimensions and the slenderness of
its lower molars. Thus, it comes closest to Storchia, a small
water-mole with narrow lower molars described by Dahl-
mann (2001) from Late Neogene deposits of Germany.
There are only Storchia wedrevis from Wölfersheim
(MN15) and Storchia sp. from Dorn-Dürkheim-1 (MN11)
known thus far. Besides these two taxa, “Desmanella”  quin-
quecuspidata Mayr et Fahlbusch, 1975 from Hammer-
schniede 1 (MN9) is also known. Dahlmann (2001) argues
about this problematic taxon as a potential primitive spe-
cies of Storchia, representing an ancestor of S. wedrevis.

However, the Bonanza specimen also shows some differ-

ences from aforementioned taxa.

It differs from Storchia wedrevis in:
– the taller and more slender paraconid, more anteriorly

situated protoconid, the presence of the metacristid, and the
presence of a small trigonid basin on m2;

Fig. 8. Bivariate plot of m2 length/talonid width and m3 length/trigonid width of water-mole taxa from various Cenozoic sites of Europe and
Asia (used data: Dahlmann 2001; Engesser 1980; Mayr & Fahlbusch 1975; Rümke 1985; Ziegler 1990b, 2003; Ziegler & Mörs 2000).

– the presence of the distinct entostylid, the absence of a

cingulid under the lingual opening of the trigonid basin,
and generally more slender crown shape of m3;

– and smaller molars.
It differs from Dorn-Dürkheim-1 specimen designed as

Storchia  sp.  in:

– the distinct entostylid and anterobuccal cingulid of m2.
It differs from “Desmanella”  quinquecuspidata in:
– the presence of more faint metacristid and shallow tal-

onid basin of m2;

– the smaller and less mesiodistally compressed molars.
Storchia meszaroshi is one of the smallest desmans. Be-

cause the species are known only from fragmentary materi-
al, it is difficult to find any phylogenetic relationship.
However, it is not excluded that they represent a separate
group within Desmaninae with distinct narrow lower mo-
lars, where the increase in tooth dimensions was probably

background image


connected with the reduction of the trigonid basin and the
loss of the metacristid during evolution. On the other hand,
the problem of the phylogenetic and taxonomical position
of “Desmanella”  quinquecuspidata  remains still unsolved.
Thus, much more material and more complete dentitions are

Family:  Dimylidae Schlosser, 1887

Genus:  Plesiodimylus Gaillard, 1897

Plesiodimylus chantrei Gaillard, 1897

Figs. 9, 10

M a t e r i a l :  Left hemimandible and left upper jaw of a ju-

venile with deciduous and permanent dentition (SNM—NHM,
Z-14663/1, layer No. 11b); m1 dext. (SNM—NHM, Z-14663/2,
layer No. 11b); and lingual part of M1 dext. (SNM—NHM,
Z-14663/3, layer No. 11b).

D e s c r i p t i o n :   The presence of deciduous teeth (DP3,

DP4, Dp4) and permanent ones (M1, M2, p1, p3?, p4, m1, m2)
with unworn crowns indicates a juvenile. Unworn crowns of
loose teeth (M1 dext. and m1 dext.) indicate a juvenile
specimen(-s) as well.

Only robust blunt main cusp (paracone?) of DP3 sin. with a

weak posterior crest is visible together with a damaged dis-
tinct lingual cingulum. Its length dimension is probably larg-
er than that of its width. The height of main cusp is 0.63 mm.

The sharp main cusp (paracone?) with conspicuous an-

terior crest dominates the crown of DP4 sin. A small acces-
sory cusp (protocone?) is situated on the lingual side as a
part of the distinct cingulum. In posterior part of the
crown, a shallow basin is present. From three roots, only
faint anterior and sloping lingual ones are visible. The as-
sumed L is 2.35 mm and the height of main cusp is 0.94 mm.

The cone-shaped protocone and hypocone ( = meta-

conule) are evident on the uncovered lingual part of left
M1. The two cusps are separated by a syncline-like de-
pression, below of which a crest-like lingual cingulum is
somewhat distinctly developed. The posterior cingulum
is robust. The dimensions of this molar are as follows:
LL = 1.97 mm, HPR = 0.90 mm, HHY = 0.80 mm, and as-
sumed L is 2.45 mm.

The uncovered part of M2 sin. consists of the distinct

conical protocone and of the indistinct metacone, which is
a part of the semicircular posterior cingulum. A notch sep-
arates the protocone and cingulum from each other.
L = 1.83 mm and HPR = 0.83 mm.

Only conspicuous main cusp (protoconid?) together with

posterolingual cingulid is visible from the crown of perma-
nent left p1. Two straight roots are situated close together.
L = 1.68 mm.

The permanent p3 sin.(?) is the smallest, only 0.70 mm

long tooth with main cusp in front and with distinct lingual
and posterior cingulids. An uncovered straight root is large
and robust, slightly arched posteriorly.

The main cusp (protoconid?) dominates in the front

crown part of the deciduous left Dp4. The posterior cingulid
is distinct together with slightly undulated lingual one.
Two roots are slanted. L = 1.66 mm.

Due to the broken anterior part of the mandible lingual

side, the enamel cap of permanent p4 sin. is visible under the
extruded Dp4. Unlike the deciduous tooth, the main cusp
(protoconid?) of p4 is robust. The distinct cingulid forms the
crown base on the lingual side. Roots are not developed yet.
The assumed height of the main cusp is 1.14 mm.

Only lingual side of m1 sin. with three distinct cusps is

exposed. The low paraconid is situated in front. The
metaconid is robust and the entoconid is nearly as large
as the former cusp. The lingual cingulid is distinctly de-
veloped in anterior part, forming a border for the trigonid
basin. The molar dimensions are as follows: L = 2.38 mm,
HPAD = 0.48 mm, HMED = 1.14 mm, and HEND = 1.15 mm.

Only top of the paraconid together with the metaconid

and entoconid are exposed from left m2. The metaconid is
tall, separated from the smaller entoconid by a syncline ba-
sin. The distinct anterior part of the lingual cingulid forms
a border for the trigonid basin. The m2 dimensions are as
follows: L = 2.49 mm, HPAD~ 0.75 mm, HMED = 1.15 mm,
and HEND = 1.00 mm.

More or less, only lingual side of damaged hemimandible

molar part is preserved. The assumed Hm1 is 2.00 mm and
Lm1-m2 is approximately 4.95 mm.

The preserved lingual part of isolated right M1 consists of

three cusps. The conical protocone is taller than hypocone,
being more slender. A syncline-like basin separates the two
cusps from each other and a small intermediate cusp ( = me-
socone, according to Rabeder 1998) is situated between
them on the medial side of the crown. A preserved part of the
posterior cingulum is robust. The lingual cingulum is more
distinct in front only. The dimensions of M1 are as follows:
LM = 2.59 mm, HPR = 1.12 mm, and HHY = 1.03 mm.

The paraconid of loose m1 dext. is the smallest cusp,

connected with the protoconid by the paralophid. The
protoconid is larger than slender metaconid. The ento-
conid with short entocristid is connected with more robust
hypoconid by distinct postcristid. The buccal and posteri-
or cingulids are distinct, whereas lingual cingulid more or
less bounds small trigonid basin only. The deep talonid
basin is opened lingually.  The molar dimensions are as
follows: L = 2.42 mm, TRL = 0.77 mm, TAL = 1.13 mm,
W=1.21 mm, TRW=0.87 mm, TAW=1.19 mm, HPAD=0.84 mm,
HPRD = 1.23 mm, HMED = 1.11 mm, HHYD = 1.33 mm,
and HEND = 1.14 mm.

R e m a r k s :  Dimylid fossils are relatively frequent in Mi-

ocene deposits of Europe, represented mainly by both dental
remains and cranial fragments. Besides them, deciduous teeth
of these enigmatic insectivores have been found too. In spite of
their scarceness, they are thus far known in several species in-
cluding  Chainodus  ulmensis Ziegler, 1990, Dimylus paradox-
us von Meyer, 1846 (Ziegler 1990a), Dimyloides  rigassi
(Engesser, 1976), and also in Plesiodimylus chantrei Gaillard,
1897 (Engesser 1976). However, they only represent isolated
finds in most cases. Thus, the fossil record from Bonanza is one
of the first finds, where upper and lower permanent dentition of
P. chantrei has been found together with deciduous teeth in
one cranial fragment, indicating the animal died in the time of
its tooth replacement. Hereby, this find represents one of the
first records of P. chantrei with preserved DP3.

background image

440                                                                                            SABOL

Family:  Soricidae Fischer de Waldheim, 1817

Subfamily:  Heterosoricinae Viret et Zapfe, 1951

Genus:  Dinosorex Engesser, 1972

Dinosorex  cf.  zapfei Engesser, 1975

Figs. 11, 12

M a t e r i a l :  Right hemimandible with lower (i1, m1—m3)

and upper (P4, M1, M2) dentition; left P4, M1, M2; and cra-
nial(?) fragments (SNM—NHM, Z-14589, layer No. 12b).

D e s c r i p t i o n :   The find probably represents a fragment

of skull consisting of the damaged right hemimandible with

dentition, upper teeth, and cranial remains. Unworn crowns
indicate a young animal.

Whereas right P4 is still situated above m1, left P4 is pre-

served below the hemimandible. The posterior crest of the
conical paracone extends towards the laterally flattened
blunt cusp (metacone?), forming a cutting edge. The buc-
cal cingulum is more distinct below the metacone(?) only.
The length of P4 dext. is 2.36 mm.

Only buccal side of both M1s is uncovered. The para-

cone is wider, but lower than metacone. The buccal cingu-
lum is absent. The dimensions of molars are as follows:
L = 2.27 mm (dext.) and 2.15 mm (sin.), HPA = 1.30 mm

Fig. 9. Findings of Plesiodimylus chantrei Gaillard, 1897 from Upper Badenian deposits of Bonanza. a—c – left hemimandible and left
upper jaw of a juvenile specimen with deciduous (DP3, DP4, Dp4) and permanent (M1—2, p1, p3?, p4, m1—2) dentition (Z-14663/1;
a, b – lingual views; c – detail view to the dentition). d—f – lingual part of M1 dext. (Z-14663/3; d, e – occlusal views; f – lingual
view). g—j – m1 dext. (Z-14663/2; g – buccal view; h – lingual view; i, j – occlusal views).

background image


(dext.) and 1.08 mm (sin.), HME = 1.35 mm (dext.) and
1.25 mm (sin.).

Whereas only buccal side of right M2 is visible, the whole

occlusal surface of left M2 is exposed due to post-mortal
processes. The paracone is large cusp with two crests, poste-
rior one of which extends towards the mesostyle – a blunt
cusp on the buccal side between the both paracone and
metacone. The metacone is similar to the paracone. From
two lingual cusps, the protocone is larger than the hypo-
cone. A shallow basin opened lingually separates these
cusps from each other. Next distinct basin is situated in the
central crown part between the buccal cusps and lingual
ones. The dimensions of the two molars are as follows:
L = 1.99 mm (dext.) and 2.28 mm (sin.), LM = 1.97 mm (sin.),
W = 2.40 mm (sin.), and WM = 2.05 mm (sin.).

The lower incisor is acuspidate, with a distinct cingulid

on the crown base. L = 7.19 mm and W = 1.80 mm.

Only cusps on the buccal side of right lower molars are

visible. The protoconid of m1 is larger and taller than the
hypoconid. The distinct oblique crest extends from the
hypoconid towards the protoconid-metaconid posterior
wall. The buccal cingulid is marked, posteriorly weakly
expanded. The front part of this molar exceeds the anterior
mandible margin.

The m2 is smaller than m1. The protoconid is robust,

whereas the hypoconid is smaller and more slender. The
distinct buccal cingulid is somewhat more robust under
the hypoflexid.

Only conspicuous protoconid is uncovered from

cusps of the smallest m3. This cusp is approximately as
large as the hypoconid of m2. The buccal cingulid dis-
tinctly forms the crown base.

The upper part of the coronoid process is broken off to-

gether with the condylar process, whereas the hook-like
angular one is more or less preserved. The external tem-
poral fossa is shallow, divided by a low horizontal crest
in lower part. The mandible body expands anteriorly.
There is an inconspicuous depression anterior to the

Fig. 10. Bivariate plot of m1 length/talonid width of Plesiodimylus-species
from various Miocene sites of Europe and Turkey (used data: Baudelot
1972; Bolliger 1992; Engesser 1972, 1980; Gaillard 1899; Müller 1967;
Rabeder 1998; Seemann 1938; Zapfe 1951; Ziegler & Mörs 2000).

Fig. 11. Dinosorex cf. zapfei Engesser, 1975 from Upper Badenian sed-
iments of Bonanza. a—b – right hemimandible with lower (i1, m1—m3)
and upper (P4, M1, M2) dentition, upper left teeth (P4, M1, M2), and
cranial(?) fragments (Z-14589). c – detail view to the lower (m1—m3)
and upper (P4, M1, M2) right dentition. d – detail view to the upper
left teeth (P4, M1, M2). e – detail view to the first lower incisor.

large and deep mental foramen, which is situated below
the trigonid of m2. Alveoli of antemolars are present be-
tween m1 and lower incisor, but they are partly covered
by rock and so their outlines  are poorly evident. The di-
mensions of the mandible are as follows: L = 11.20 mm,
Lm1—m3~ 6.24 mm, Hm1 = 3.25 mm, and Hm3 = 2.60 mm.

R e m a r k s :  Acuspidate lower incisor and divided mas-

seteric fossa of the Bonanza find positively indicate the ge-
nus  Dinosorex, thus far known in three species from the
Middle Miocene of Europe – D. zapfei Engesser, 1975,

background image

442                                                                                            SABOL

D. sansaniensis (Lartet, 1851), and D. pachygnathus En-
gesser, 1972. However, the exact species determination of
the fossil under study is more or less questionable, because
its diagnostic characters are either not visible (occlusal sur-
face of lower molars is covered by rock) or they are missing
(the condylar process is broken off). Thus, only circumstan-
tial characters have been used for the analysis. The classifi-
cation of the Bonanza find to the species D. pachygnathus
is excluded mainly for differences in the shape of the mandi-
ble and lower incisor, which is more slender in the fossil
under study. Also, the exact determination of the find to D.
zapfei or D. sansaniensis is not possible for aforementioned
reasons. On the other hand, fossils of D. zapfei are known
from nearby Devínska Nová Ves-Fissures site, a type locali-
ty for this heterosoricine taxon, dated to the Biozone MN6.
From this viewpoint, it is not excluded that the Dinosorex
remains from Bonanza belong to the same species. Howev-
er, it is determined as Dinosorex cf. zapfei because not all
characters could be evaluated.

Soricidae gen. et spec. indet.

Fig. 13

M a t e r i a l :  Right upper incisor (DGP, MS-18, layer un-


D e s c r i p t i o n :   A semilunar main cusp with two dis-

tinct lateral edges dominates the slightly worn hook-like
crown of this non-fissident upper incisor. Two accessory
cusps are present at the talon. The buccal of them is larger
and sharper than lingual one. Only the buccal cingulum is
distinct. The dimensions are as follows: H = 1.03 mm,
L = 1.31 mm, and LT = 0.64 mm.

R e m a r k s :  The described upper incisor and the find of

above-mentioned  Dinosorex cf. zapfei represent the only
soricid fossils known from the site so far. However, the
classification of the loose upper incisor to the subfamily
Heterosoricinae is excluded because of its different crown
shape and dimensions. Among non-heterosoricine soric-
ids, approximately 30 species are known from the Europe-

an Miocene so far. Seven of them (Miosorex grivensis
(Depéret, 1892); M. desnoyersianus (Lartet, 1851); Larte-
tium dehmi (Viret et Zapfe, 1951); L. prevostianum (Lartet,
1851);  Paenelimnoecus crouzeli Baudelot, 1972; Hemi-
sorex robustus Baudelot, 1972; and “Allosorex” gracil-
idens (Viret et Zapfe, 1951)) have been found in
sediments, dated to the MN6 Zone (Ziegler 1999). From
the morphological and metric point of view, the incisor
under study can belong to some representative of the sub-
family Crocidosoricinae – it is very similar to that of M.
grivensis figured by Engesser (1972, Abb. 12b). However,
no comparative material has been seen and so the find is
only determined as Soricidae gen. et spec. indet. so far.

?Lipotyphla gen. et spec. indet

Fig. 14

M a t e r i a l :  Fragment of the juvenile left pentadactyl

forelimb (SNM—NHM, Z-14578, layer unknown).

D e s c r i p t i o n :   The forelimb fragment of a small mam-

mal consists of four metacarpals (McII—V), five proximal
phalanges, three medial phalanges, and one distal pyrami-
dal phalanx of the second finger. The metacarpals, the
third of which is the largest bone, are either relatively mas-
sive (McII, McV) or slender (McIII, McIV). The proximal
phalanges are short to long and slender, whereas medial
finger bones are shorter than proximal ones. The proximal
part of the distal pyramidal phalanx is widened and its dis-
tal part is tapered to the point.

R e m a r k s :  Although the exact position and exact de-

termination of this forelimb fragment are unknown, it is
not excluded that it can belong to a young (free epiphyses)
specimen of Dinosorex or Plesiodimylus, whose juvenile
fossils have been found in the same light, solid, laminated
calcareous sandstone as well. However, it is determined as
?Lipotyphla gen. et spec. indet. because much more com-
plete material for the exact determination is necessary.

Biostratigraphic considerations

Insectivores have less high stratigraphic value than rodents

mainly due to the ignorance of their lineages (Ziegler 2003).

Fig. 12. Bivariate plot of M2 length/width of Dinosorex-species
from various Miocene sites of Europe and Turkey (used data:
Baudelot 1972; Bolliger 1992; Engesser 1972, 1980; Rabeder
1998; Ziegler & Mörs 2000).

Fig. 13. Soricidae gen. et spec. indet.; right upper incisor (MS-18),
Late Badenian, Bonanza. a—b – lingual view, c – buccal view.

background image


The stratigraphic ranges of individual species found in Bo-
nanza are outlined in order according to Ziegler (1999).

The stratigraphic range of Lantanotherium  sansaniense

is from MN6 to MN8, though slightly smaller L. aff. san-
saniense is also known from MN5 sites (e.g. Viehhausen,
Maßendorf or Hambach 6C). This lesser form apparently
represents an ancestor of L. sansaniense (Ziegler, 1999). To
the contrary, the Bonanza find represent a larger form than
Lantanotherium  fossils from the Sansan type-site (MN6).
Because it is assumed that the size differences can lie within
the variability of the species, Lantanotherium from Bonan-
za could represent a Late Badenian insular form of this
galericine erinaceid (see also below).

Talpa minuta is one of the most common talpids, which

probably arrived in Europe during the Early Orleanian immi-

Fig. 14. ?Lipotyphla gen. et spec. indet.; a fragment of the left
forelimb of a juvenile specimen  (Z-14578), Late Badenian, Bo-
nanza. a—b – dorsal view.

gration wave. Its fossils are known from many sites in Germa-
ny, Bohemia, Slovakia, Poland, France and Spain, correlated
with MN3 (or MN2 (cf.) resp.) to MN9 (Ziegler 1999).

Storchia was known only from the Late Miocene to the

Early Pliocene up to now. Thus, the new species (S.
meszaroshi) extends the genus range to the Middle Miocene.

Plesiodimylus chantrei is also one of the most common

Miocene insectivore species, widespread especially in West-
ern and Central Europe. Its fossils are known from many sites
dated from MN4 (aff., cf.) to MN11 (Ziegler 1999).

The stratigraphic range of Dinosorex zapfei is restricted

only to MN6, though its close relative forms (aff., cf.) are
also referred from MN4 and MN5 sites (e.g. Petersbuch 2,
Hambach, Obergänserndorf 2, Teiritzberg 1 and 2).

With respect to this, the stratigraphic range of the deter-

mined species of the found insectivore assemblage from
Bonanza enables us to correlate the age of the site proba-
bly with MN5 to MN6 Zone. However, a rodent fauna from
the same site indicates Late Badenian part of MN6 Zone
(Sabol in prep.), which is in good agreement with the opin-
ion of Holec et al. (1987). On the basis of lithological cir-
cumstances, they date the site to a younger period than a
nearby locality Devínska Nová Ves-Fissures, whose faunal
assemblage represents the lower part of MN6 Zone (upper
part of the Middle Badenian) (Fejfar 1990, 1997).

Paleoenvironmental aspects

Unlike their biostratigraphical use, insectivores are rela-

tively good indicators of paleoenvironmental conditions.

The geographical distribution of extant representatives of

Galericinae, to which extinct Lantanotherium belongs, is to-
day restricted to relic areas of South-eastern Asia only. They
live in subtropical forested environment, often close to water
(Ziegler 1999). The largest extant form, Echinosorex gymnu-
rus Raffles, 1821, is the largest extant insectivore as well. Its
diet consists of worms, beetles, termites, centipedes, spiders,
fish, and frogs including tadpoles (Gaisler et al. 1995).

The Talpini is an Old World tribe. The presence of Talpa

in an assemblage is not very informative for paleoenviron-
mental and paleoclimatic questions (Ziegler 2003).

All modern water-moles are well adapted for a life in wa-

ter and near water (semi-aquatic habitat) – whereas Des-
mana moschata (Linnaeus, 1758) lives on the overgrown
banks of slowly flowing rivers and lakes, the Pyrenean wa-
ter-mole (Galemys pyrenaicus (Geoffroy, 1811)) inhabits
the banks of pure streams (Gaisler et al. 1995). The same
surely goes for extinct taxa too. Thus, the presence of
freshwater habitat in the near vicinity of the site during the
deposition of fossiliferous sediments is assumed. From the
viewpoint of diet, extant desmans feed on molluscs,
worms, insects, small fish, frogs and their tadpoles, and
plants. It is possible to assume the same diet composition
in most of the extinct water-moles with inflated lower
cheek teeth, whereas the narrow lower molars of Storchia-
species indicate an enhanced cutting capability.

The dimylids are assumed to be semi-aquatic malacopha-

gous extinct insectivores (Ziegler 1999). However, no post-

background image

444                                                                                            SABOL

cranials of these enigmatic mammals are known until now,
so their semi-aquatic mode of life is questionable (Zie-
gler & Mörs 2000). On the other hand, the find of Ple-
siodimylus chantrei together with fossils of other
semi-aquatic vertebrates (water-mole, frogs) on the site
can support the opinion on their inhabitation of a habitat
close to water. The dentition of Plesiodimylus-species is
mostly slightly specialized. For this reason, it is assumed
a more insectivorous dietary habit for them than for other
representatives  of Dimylidae (Ziegler 1999).

The value of soricids (mainly those of extinct subfami-

lies and/or species) in the reconstruction of the paleoenvi-
ronment is relatively low. Most of them are terrestrial, but
some are semi-aquatic or burrowing occasionally. They
are insectivorous or carnivorous, some also herbivorous
animals (Ziegler 1999).

The insectivore assemblage under study indicates a forest-

ed environment close to water. However, in detailed paleoen-
vironmental reconstruction, the whole fossil assemblage
should be analysed. Besides insectivores, representatives of
Sciuridae, Cricetidae, Gliridae, Eomyidae, Viverridae, Pho-
cidae, Mustelidae, Chiroptera, Cervidae, and Mammutidae
are known from the site. Reptiles, frogs, fish, sharks, and ma-
rine bivalves belong among relatively frequent fossil finds as
well. Thus, the composition of the whole Bonanza assem-
blage refers to a mixed one living in an insular or peninsular
area, covered by a subtropical forest with freshwater lagoons
or marshes in the near vicinity of a prograding sea. The record
of terrestrial (reptiles and land mammals), freshwater (frogs)
and semi-marine (seals) to marine (sharks and fishes) verte-
brates could serve as good evidence of this assumption.

Composition of insectivore assemblage

The Miocene insectivore fossil record shows greater di-

versity than the extant European insectivore fauna. The ab-
sence of plesiosoricids and dimylids is an illustrative case
among recent insectivores. On the other hand, the number of
insectivore taxa and the composition of individual fossil
insectivore assemblages frequently vary both in space and
time. Despite the incompleteness of the fossil record, this
compositional variability can be evoked by various factors,
mainly by environmental and climatical changes.

From the viewpoint of the similarity of assemblages from

some important European sites dated from MN5 to MN8

(Table 1) on the level of insectivore genera, the Bonanza
insectivore assemblage displays the largest analogy espe-
cially with that of Devínska Nová Ves-Fissures (Neudorf-
Spalte, MN6). The only difference is observed in the
number of talpid taxa. Whereas five taxa of talpids are
known from Fissures  (Talpa minuta,  “Scaptonyx”  edwardsi,
?Urotrichus dolichochir, and two undeterminable moles),
the Bonanza assemblage thus far contains only two talpid
species (T. minuta and  Storchia meszaroshi). This absence
of urotrichine taxa together with the presence of a water-
mole within the whole insectivore assemblage under study
probably reflects the paleoecological changes connected
with the terrestrial—marine environmental transition before
and/or during the Late Badenian transgression in the territo-
ry of the Devínska Kobyla Hill.

The insectivore assemblages of Sansan (MN6) and Anwil

(MN8) also display a relatively great index of similarity
with the Bonanza sample. However, detailed comparisons
are more or less limited, as the insectivore fossil record from
the site under study is very scarce.


Eight specimens of insectivores (Lantanotherium  aff.

sansaniense, Erinaceidae gen. et spec. indet., Talpa minuta,
Storchia meszaroshi nov. sp., Plesiodimylus chantrei,  Di-
nosorex  cf. zapfei, Soricidae gen. et spec. indet., and ?Lipo-
typhla gen. et spec. indet.) were collected in the Bonanza
fossil site. This insectivore assemblage comprises several
new faunal elements including a new form of water-mole
from the Middle Miocene (Storchia meszaroshi sp. nov.).

The composition of the insectivore assemblage, sup-

ported by records of rodents, validated the assumed Late
Badenian age of the site (MN6).

The found insectivores indicate a forested coastal sub-

tropical environment with neighbouring freshwater la-
goon, marsh or delta, situating in an insular or peninsular
area on the eastern side of the Vienna Basin.


 Author is grateful to the Grant Agen-

cy for Science, Slovakia (Project No. 1/0002/03) and ESF
(Project EEDEN No. 2001/04/0143) for the financial
support. Author also wishes to thank to Prof. Oldřich Fej-
far, Dr. Reinhard Ziegler, and Assoc. Prof. Jozef Michalík
for valuable advice and critical reading of the first article


Number of insectivore taxa 


Erinaceidae Talpidae Dimylidae  Plesiosoricidae  Soricidae 

Index of 



Hambach 6C 


Ziegler & Mörs 2000 



Fejfar & Sabol (in press) 




de Bruijn et al. 1992 

Neudorf-Spalte 2 

5  1 


3  0.57 



La Grive 



de Bruijn et al. 1992 

Anwil 2 




Bonanza 2 

1 – 











Table 1: The number of insectivore taxa from some Middle Miocene European sites and the comparison of similarity of individual as-
semblages with the Bonanza sample on the basis of calculated Sorensen Index (2B/(F1+F2)). B – number of common genera, F1 – num-
ber of genera from the first compared site, F2 – number of genera from the second compared site (Bonanza).

background image


version, Ján Schlögl, Eva Kadlecová and the Institute of
Inorganic Chemistry of the Academy of Sciences of
Czech Republic for technical support as well as to the
Slovak National Museum – Natural History Museum for
providing fossil material for this research.


Baudelot S. 1972: Etudes des Chiropteres, Insectivores et Rongeurs

du Miocene de Sansan (Gers). Manuscript, Toulouse, 1—364.

Bolliger T. 1992: Kleinsäugerstratigraphie in der miozänen Hörnlis-

chüttung (Ostschweiz). Documenta Naturae 75, 1—296.

Bruijn de H., Daams R., Daxner-Höck G., Fahlbusch V., Ginsburg

L., Mein P. & Morales J. 1992: Report of the RCMNS working
group on fossil mammals, Reisenburg 1990. Newslett. Stratigr.
26, 2, 3, 65—118.

Dahlmann T. 2001: Die Kleinsäuger der unter-pliozänen Fundstelle

Wölfersheim in der Wetterau (Mammalia: Lipotyphla, Chiroptera,
Rodentia). Cour. Forschungsinst. Senckenberg 227, 1—109.

Engesser B. 1972: Die obermiozäne Säugetierfauna von Anwil

(Baselland).  Tätigk.-Ber. Naturforsch. Gesell. Baselland, Band
28, (1969—1970), 37—363.

Engesser B. 1976: Zum Milchgebiss der Dimyliden (Insectivora,

Mammalia). Eclogae Geol. Helv. 69, 3, 795—808.

Engesser B. 1980: Insectivora und Chiroptera (Mammalia) aus

dem Neogen der Türkei. Schweiz. Paläont. Abh. Band 102,

Fejfar O. 1990: The Neogene VP sites of Czechoslovakia. A contri-

bution to the Neogene terrestric biostratigraphy of Europe
based on rodents. In: Lindsay E.H., Fahlbusch V. & Mein P.
(Eds.): European Neogene mammal chronology. NATO ASI
(New York), Series A 180, 211—236.

Fejfar O. 1997: Miocene biochronology. In: Aguilar J.P., Legendre

S. & Michaux J. (Eds.): Actes du Congrés BiochroM ’97.
Mém. Trav. E.P.H.E., Inst. de Montpellier, 21, 795—802.

Fejfar O. & Sabol M. 2005: Neogene Insectivores of the Bohemian

massive and Western Carpathians. In: Hoek Ostende L.W., van
den Reumer J. & Doukas C.D. (Eds.): The fossil record of the
Eurasian Neogene insectivores (Erinaceomorpha, Soricomor-
pha, Mammalia). Scr. Geol., Spec. Issue 5, (in press).

Gaillard C. 1899: Mammif

ères miocènes nouveaux ou peu connus

de La Grive-St.-Alban. Arch. Mus. Hist. Natur. Lyon, 7.

Gaisler J., Zejda J., Knotek J. & Knotková L. 1995: Mammals.

Aventinum,  Praha, 1—496 (in Czech).

Holec P., Klembara J. & Meszároš Š. 1987: Discovery of new fauna

of marine and terrestrial vertebrates in Devínska Nová Ves.
Geol. Zbor. Geol. Carpath. 38, 3, 349—356.

Ivanov M. 1998: The snake fauna of Devínska Nová Ves (Slovak

Republic) in relation to the evolution of snake assemblages of
the European Middle Miocene. Acta Mus. Morav., Sci. Geol.
LXXXIII, 159—172.

Jong de 1988: Upper Aragonian and Lower Vallesian Insectivora.

In: Freudenthal M. (Ed.): Biostratigraphy and paleoecology of
the Neogene micromammalian faunas from the Calatayud-Ter-
uel Basin. Scr. Geol., Spec. Issue 1, 1—302.

Joniak P. 2005: New rodent assemblage from Upper Miocene

deposits of the Vienna and Danube Basins. Manuscript,
Bratislava, 1—130.

Koretsky I. A. & Holec P. 2002: A primitive seal (Mammalia: Pho-

cidae) from the Early Middle Miocene of Central Paratethys.
In: Emry R.J. (Ed.): Cenozoic mammals of land and sea: Trib-

utes to the Career of Clayton E. Ray. Smithsonian Contrib. Pa-
leobiol. 93, 163—178.

Mayr H. & Fahlbusch V. 1975: Eine unterpliozäne Kleinsäugetier-

fauna aus der Oberen Süßwasser-Molasse Bayerns. Mitt. Bayer.
St.- Samml. Paläont. Hist. Geol. 15, 91—111.

McKenna M.C. & Bell S.K. 1997: Classification of mammals.

Above the species level. Columbia University Press, New
York, 1—634.

Mein P. & Ginsburg L. 2002: Sur l’âge relatif des différents dépôts

karstiques mioc

ènes de La Grive-Saint-Alban (Isère).  Cah.

Scientifique – Mus. His. Natur. 2, 7—47.

Müller A. 1967: Die Geschichte der Familie Dimylidae (Insectivora,

Mamm.) auf Grund der Funde aus tertiären Spaltenfüllungen
Süddeutschlands.  Bayerische Akad. Wiss.,  Math.-Nat. Kl. 129,

Pipík R. & Sabol M. 2005: Paenelimnoecus sp. (Lipotyphla, Mam-

malia) from the Late Miocene deposits of the Turiec Basin (Slo-
vakia) and its paleoenvironment. Beitr. Paläont. (in press).

Rabeder G. 1973: Galerix und Lanthanotherium (Erinaceidae, In-

sectivora) aus dem Pannon des Wiener Beckens. Neu. Jb. Geol.
Paläont. 7, 429—446.

Rabeder G. 1998: Säugetiere (Mammalia) aus dem Karpat des Kor-

neuburger Beckens. 1. Insectivora, Chiroptera und Marsupialia.
Beitr. Paläont. 23, 347—362.

Reumer J.W.F. 1984: Ruscinian and early Pleistocene Soricidae (In-

sectivora, Mammalia) from Tegelen (The Netherlands) and
Hungary.  Scr. Geol. 73, 1—174.

Rümke C.G. 1985: A review of fossil and recent Desmaninae (Talp-

idae, Insectivora). Utrecht Micropaleont. Bull.,  Spec. Publ. 4,

Seemann I. 1938: Die Insektenfresser, Fledermäuse und Nager aus

der obermiozänen Braunkohle von Viehhausen bei Regens-
burg.  Palaeontographica,  Abt. A 89.

Špinar Z.V., Klembara J. & Meszároš Š. 1993: A new toad from the

Miocene at Devínska Nová Ves (Slovakia). Západ. Karpaty,
Sér. Paleont. 17, 135—160.

Viret J. 1940: Etude sur quelques Erinacéidés fossiles genres Plesio-

sorex,  Lanthanotherium.  Trav. Lab. Géol. Fac. Sci. Lyon 39,
28, 33—68.

Zapfe H. 1951: Die fauna der miozänen Spaltenfüllung von Neu-

dorf a.d. March (ČSR). Insectivora. Sitz.-Ber. Akad. Wiss.
(Wien), Math.-Naturwiss. Kl., Abt. I, 160, 449—480.

Ziegler R. 1983: Odontologische und osteologische Untersuchun-

gen an Galerix exilis (Blainville) (Mammalia, Erinaceidae)
aus den miozänen Ablagerungen von Steinberg und Gold-
berg im Nördlinger Ries (Süddeutschland). Manuscript,
München, 1—244.

Ziegler R. 1990a: Didelphidae, Erinaceidae, Metacodontidae und

Dimylidae (Mammalia) aus dem Oberoligozän und Untermi-
ozän Süddeutschlands. Stuttgarter Beitr. Naturkunde,  Serie B
(Geol. und Paläont.) 158, 1—99.

Ziegler R. 1990b: Talpidae (Insectivora, Mammalia) aus dem

Oberoligozän und Untermiozän Süddeutschlands. Stuttgarter
Beitr. Naturkunde, Serie B (Geol. und Paläont.) 167, 1—91.

Ziegler R. 1999: Order Insectivora. In: Rössner G.E. & Heissig K.

(Eds.): The Miocene land mammals of Europe. Verlag Dr.
Friedrich Pfeil, München, 53—74.

Ziegler R. 2003: Moles (Talpidae) from the late Middle Miocene of

South Germany. Acta Palaeont. Pol. 48, 4, 617—648.

Ziegler R. & Mörs T. 2000: Marsupialia, Lipotyphla und Chi-

roptera (Mammalia) aus dem miozän des Braunkohlentage-
baus Hambach (Niederrheinische Bucht, NW-Deutschland).
Palaeontographica,  Abt. A 257, 1—26.