background image


Upper Jurassic shallow-water scleractinian corals from the

Pieniny Klippen Belt (Western Carpathians, Slovakia)






Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 40-063 Kraków, Poland;


Department of Geology and Paleontology, Comenius University, Mlynská Dolina G-1, 842 15 Bratislava, Slovak Republic

(Manuscript received October 15, 2004; accepted in revised form March 17, 2005)

Abstract: Oxfordian shallow-water scleractinian coral association from the biohermal limestones of the Mt Vršatec
(Czorsztyn Succession, Slovak sector of the Pieniny Klippen Belt, Western Carpathians) comprises 18 species (among
them 2 new) plus 3 taxa determined on the generic level only. They represent 13 genera and 10 (or 11) families. The most
common are phaceloid coral growth forms from the genus Thecosmilia Milne Edwards et Haime (family Montlivaltiidae).
The studied fauna appears similar, though less diversified taxonomically, as compared to those known from the Upper
Jurassic shallow-water facies of many other parts of Europe. In the Pieniny Klippen Belt this type of coral fauna occurs
only in Western Slovakia.

Key words: Oxfordian, Slovakia, Pieniny Klippen Belt, paleogeography, taxonomy, Scleractinia.


The Upper Jurassic scleractinian corals described here
come from biohermal limestones in the Vršatec klippe
(Czorsztyn Succession) in the Slovak sector of the Pieniny
Klippen Belt (PKB), Western Carpathians (Figs. 1, 2).
Scleractinians occur sporadically in Callovian-Oxfordian
pink and grey peribiohermal limestones and reef breccias,
but quite frequently in Oxfordian, shallow-water, mainly
white biohermal limestones. The lithological and bios-
tratigraphical characteristics of the Jurassic coral-bearing
sediments of the Czorsztyn Unit in the Slovak sector of
the PKB were given by Mišík (1979). Some of the coral
specimens from these sediments identified by the first au-
thor were listed in Mišík’s paper (1979: p. 19). The corals
from the Vršatec limestones, although not so numerous in
specimens and species furnish some data for paleogeo-
graphical and paleoecological reconstruction of the Late
Jurassic in the PKB.

Scleractinian corals representing 22 taxa (Table 1) were

identified in the shallow-water carbonate facies of the Vr-
šatec klippe. The coral assemblage appears similar, though
less species-diversified, to those known mainly from the
shallow-water Upper Jurassic facies of the European
Tethyan and epicontinental deposits.

Almost all material described here is housed in the Slo-

vak National Museum, Bratislava, under the acronyme
SNM Z 24183-24230/n.

Geological setting

Upper Jurassic biohermal limestones with scleractinian

corals of the Czorsztyn Succession in the PKB (Western
Slovakia) occur within a 17 km stretch enclosing four
neighbouring localities: Dolná Súča, Krivoklát, Vršatec

and Mikušovce (Fig. 1B). The corals described here come
from the Vršatec limestones occurring in the Vršatec Cas-
tle klippe area (Figs. 1, 2).

The Vršatec  klippe has long been known, cited and de-

scribed in many geological papers (e.g. Andrusov 1953:
p. 28). This is a tectonic klippe (lens) consisting of Juras-
sic and Lower Cretaceous limestones and enveloped by
plastic marls of Late Cretaceous age. The detailed litho-
logical, microfacies and biostratigraphical characteristics
of these sediments were presented by Mišík (1979: Fig. 3).
Mišík (l.c.)  distinguished ten lithostratigraphical members
within the klippe, with ages (Bathonian—Albian) deter-
mined on the basis of microfossils (Mišík 1979) and mac-
rofossils, mainly brachiopods (Siblík 1978) and bivalves
(Kochanová 1978).

The biohermal limestones (30 m thick), white, pink and

grey, with corals, calcareous sponges and thick-shelled bi-
valves, were presented by Mišík (1979) as a new member
of the Czorsztyn Succession and named the “Vršatec
Limestone” (the stratotype of the Vršatec Limestone; Mišík
1979: p. 49). The Oxfordian age of these limestones is
shown mainly by the bivalves (Kochanová 1978). The
limestones are considered to be the “reef core” proper.
They pass laterally into a fore-reef facies, consisting of
reef breccias (peribiohermal limestones; Mišík 1979), with
rare corals. This facies is situated ca. 800 m SW of Vršatec

Material and methods

The Oxfordian specimens examined here have been col-

lected by the second author from the Vršatec klippe area
(Fig. 1C). The collection is composed of about 50 mainly
fragmentary colonial (lamellar and massive) and pseudo-
colonial (phaceloid-dendroid) coral skeletons embedded

background image

416                                                                              MORYCOWA and MIŠÍK

in limestone. Their dimensions (height and width) are
from several millimeters to at most 30 cm. About 60 trans-
verse and longitudinal thin sections were used for micro-
structural and micromorphological analyses  of the coral
skeletons. In spite of their generally  strong recrystalliza-
tion, the remains of primary microstructure (traces of the
trabecular centers and their arrangement) and microarchi-
tectural structure (“ornamentation”) are preserved in places
in less altered parts of septa.

The microarchitecture and microstructure of radial ele-

ments were described by a conventional method – using
thin sections. The SEM micrograph method is not effec-
tive on account of diagenetic alterations of skeletons.

Oxfordian coral assemblage from the Vršatec


From the Oxfordian biohermal limestones (the Vršatec

Limestone) 18 species (among them 2 new) and 3 taxa on
generic level were identified, as well as one taxon as ge-
nus and species indeterminate (Table 1). They represent
13 genera, 10 (or 11) families and 5 suborders. The most
common among them are colonial and pseudocolonial
(phaceloid) forms from the family Montlivaltiidae. Other
families are rather poorly represented. Thus the corals are
low in species-diversity and have rather wide-ranging

stratigraphic distribution (Table 1). The stratigraphic dis-
tribution based on 12 species identified with certainty  is
large, from Bajocian to Tithonian (and perhaps even to
Early Cretaceous), but 11  of them are known from the in-
terval Oxfordian—Tithonian, and 3 (or 4) occur only in the
interval Oxfordian—Kimmeridgian. Among all 18 species,
4 of them represent surviving Bajocian-Callovian taxa.

The small coral fauna from the Slovak part of the PKB

appears similar, though less diversified in species, to those
known from the Upper Jurassic shallow-water facies from
the Western and Central European Tethyan and epiconti-
nental provinces. Some, but not numerous, species are also
common in Eastern Europe (Crimea, Caucasus), Asia (Ti-
bet, central Iran, western India, Japan) and Northern Africa
(Morocco, Algeria).

Coral-bearing sediments and depositional


The coral-bearing biohermal limestones from the Vr-

šatec klippe  are predominantly white, fine-grained (pre-
dominantly biomicrite, biomicrosparite, biosparite) with
abundant microfossils as calcified radiolarians, sponge
spicules, microfossils incertae sedis and macrofossils such
as  sponges, polychaetous annellids, bivalves, rare gastro-
pods, bryozoans,  brachiopods and echinoderm grains. In

Fig. 1. A – Position of the Vršatec klippe (rectangle figure) relative to the Pieniny Klippen Belt (black irregular line). B – Topographic
map of the Váh valley region (Western Slovakia) showing the localities (black dots) limiting the area where Vršatec Limestone occurs and
where the location of the Vršatec klippe (square shape) is situated. C – Geological map of Vršatec klippe with the sites in which the studied
scleractinian corals occur (Nos. 22 and 42). After Mišík 1979, simplified. 1 – Bajocian: white crinoidal limestones, 2 – Bathonian: pink
crinoidal limestones, 3 – Callovian-Oxfordian: pink and red (peribiohermal) limestones, 4 – Oxfordian: Vršatec Limestone, 5 – Oxford-
ian-Kimmeridgian: pink limestones with bivalves, 6 – mainly Kimmeridgian: red, nodular Czorsztyn limestones, 7 – Upper Tithonian-
Lower Cretaceous white and pink limestones with calpionellids, pink, crinoidal limestones with Pygope, pinkish, slightly crinoidal
limestones, 8 – Albian, in places to Lower Cenomanian: relics of transgressive, red muddy limestones, 9 – black dots – explication–Fig. 1B.

background image


Table 1: Geographical and stratigraphic distribution of the Oxfordian scleractinian species from the Vršatec Limestone in Western Slo-

 – species identified as certain, 

 – geographical distribution of those species, which were determined here as affinis and




– uncertain stratigraphic distribution of species.

addition these limestones include inorganic components
(cf. Mišík 1979: p. 19) such as: intraclasts and pellets.
Coral growth forms are mostly branching (phaceloid and
dendroid), less frequently lamellar  and massive. Some of
the colonies in places form an overgrowth on other colo-
nies (Fig. 8.1).

The environmental interpretation of the discussed cor-

als, based on the sediment features and associated fossils,
including the coral species typical of the Jurassic shallow-
water reef and reef-like buildups as well as on the coral
growth forms, suggests that these corals developed in shal-
low, low-dynamic water, with a rather low sedimentation
rate (presence of small boring traces). However, the calcare-
ous green algae, so characteristic of the shallow-water Up-
per Jurassic coral limestones of the Tethys are almost
absent here, it suggests that the depositional environment
could represent slightly deeper water. The predominance
of branching coral skeletons could also show that they de-
veloped in a slightly deeper shallow-water environment,
within a carbonate platform or the upper part of its slope.


The classification of scleractinian corals used here gen-

erally follows Alloiteau (1952, 1957) and Wells (1956)
with emendations and supplements introduced by Eliášová
(1976c, 1990), Lathuilière (1990), Morycowa & Ro-
niewicz (1990, 1995a), Roniewicz (1976, 1979) and Ro-
niewicz & Stolarski (2001).

Fig. 2. Vršatec Castle klippe. Biohermal limestones occur in its
higher part (to left from the broken line – arrow).

background image

418                                                                              MORYCOWA and MIŠÍK

Abbreviations and some terms used in the present paper:

D – corallum diameter (two perpendicular diameters); H – coral-

lum height; Cor—cor – distance between corallites; d cor – corallite
diameter; d cal – calice diameter; d l – corallite lumen diameter (in
thin transverse section); c—c – distance between centers of neigh-
bouring corallites; h – corallite height; S – number of septa in the
corallite; S1—nS – septa of the succeeding size orders; th s – septum
thickness; C – number of costae in the corallite; den s – density of
septa (costosepta or radial elements, measured at the wall or in periph-
eral part of corallite); den c – density of costae; den d – density of
dents (distal edge of radial elements); den tr c – density of trabecular
centers (per µm or mm, measured along the septal plate, in transverse
section); den car – density of carenae (in mm in transverse section);
den pen (long. sect.) – density of pennules (per mm in longitudinal
section);  den end – density of endothecal elements; (...) – less fre-
quent values are presented in brackets; ((...)) – sporadic values.

The year of publication in the synonymy lists is in italics if the spe-

cies is mentioned but not described or illustrated.

Corallite terminology is applied after Alloiteau (1952, 1957) and

Wells (1956) with some additional terms concerning microstructure
and microarchitecture of skeletons (i.a. Jell 1969; Gill 1967).

The microstructure descriptions do not refer to scleractinian skele-

tal genesis interpretations, as recently presented in Stolarski 2003
(layered model of skeletal growth, organic and mineral phase depos-
its). Instead of the traditional trabeculae and centres of calcification,
Stolarski (2003: p. 497) proposes “a distinction between deposits of
the Rapid Accretion Front (dRAF); which in particular cases can be
organized into Centers of Rapid Accretion (CRA), and Thickening
Deposits (TD)…”.

In the descriptions of the microstructure of thin sections we use tra-

ditional “centres of trabeculae” (instead of CRA). From the distances
between them and their arrangement in the radial elements the type of
microstructure, characteristic of suprageneric taxa has been estab-

Diameters of trabeculae (measured in transverse sections) are used

here after Morycowa & Roniewicz (1995b). The classification is arbi-
trary and is used for convenience only.

Minitrabeculae – trabeculae of diameters up to 50 µm. In some

cases they coalesce with each other and form mid-septal line;

medium-size trabeculae – trabeculae of diameters from ca. 50 to

100 µm;

thick trabeculae – trabeculae of diameters over 100 µm.

Order:  Scleractinia Bourne, 1900

Suborder:  Stylinina Alloiteau, 1952

Family:  Stylinidae  d’Orbigny, 1851

Genus:  Stylosmilia Milne Edwards et Haime, 1848

Type species: Stylosmilia michelini Milne Edwards et Haime,


Stylosmilia corallina Koby, 1881

Fig. 3.4

v1881 Stylosmilia corallina Koby, p. 62—63, Pl. 14, Figs. 3—7

1982 Stylosmilia corallina Koby – Bendukidze, p. 18
1991 Stylosmilia corallina Koby – Lauxmann, p. 126 (here supple-

mentary synonymies)

1991 Stylosmilia corallina Koby – Lebanidze, p. 13, Pl. 3, Fig. 1a,b
1991 Stylosmilia corallina Koby – Errenst, p. 176, Pl. 5, Fig. 4a,b
1997 Stylosmilia corallina Koby – Turnšek, p. 196, Pl. 196, Figs. A—F
2003 Stylosmilia corallina Koby – Helm et al., p. 82, 83, Fig. 8E

M a t e r i a l :  Several fragments of branches and 2 thin sec-

tions: SNM Z 24186/1,2.

D i m e n s i o n s  (in mm): d cor = 2.0—3.5; d l = 1.5—2.5; c—c

ca. = 4.5—6; S = 12—24 (S1 + S2 + nS3).

R e m a r k s :   The morphological features of skeleton in-

cluding diameter of the corallites, number of costosepta and
the type of budding, suggest it belongs to Stylosmilia corallina.

O c c u r r e n c e :  The species is known from the age inter-

val  middle Oxfordian—early Kimmeridgian: France, Switzer-
land, NW Spain, Poland (Holy Cross Mts), Romania (Dobruja
(Dobrogea)), Slovenia, Czech Republic (Moravia), Georgia
(Caucasus), Croatia,  Azerbaijan  (Lesser Caucasus (Maly
Kavkaz))  and Ukraine (Crimea); from Tithonian: Czech Re-
public (Štramberk region) and Serbia, as well as generally
from the Upper Jurassic in  SW Germany and China (Tibet).
Recently, the species has been cited by Helm et al.  (2003)
from the middle Oxfordian of NW Germany (Lower Saxony).

Family:  Cladophylliidae Morycowa et Roniewicz, 1990

Genus:  Cladophyllia  Milne Edwards et Haime, 1851

Type species: Lithodendron dichotomum Goldfuss, 1826

Cladophyllia rollieri (Koby, 1888)

v1888  Schizosmilia rollieri Koby, p. 436—437, Pl. 114, Fig. 4

1905 Schizosmilia rollieri Koby – Koby, p. 848
1972  Schizosmilia rollieri Koby – Turnšek, p. 44, 100, Pl. 25,

Figs. 3, 4

v1976  Schizosmilia rollieri Koby – Roniewicz, p. 110, Pl. 3, Fig. 5a,c

1997  Cladophyllia rollieri (Koby) – Turnšek, p. 35, Pl. 35,
       Figs. A—D  (here older and complementary synonymies)
2003  Cladophyllia rollieri (Koby) – Helm et al., p. 82

M a t e r i a l :  Several fragment of corallites: SNM Z

24213/1,2 (2 thin sections); SNM Z 24217/1 (1 thin sec-
tion, together with Dendraraea  cf. dendroidea).

D i m e n s i o n s  (in mm):
Specimen SNM Z 24213: d cor = 2.5

×3.5; 2.3×3.5;

c—c = 3.5—ca. 7.5; S = 24 (12S1—S2).

Koby (1888: p. 437): d cor = 2.5—3; S = 24.
D e s c r i p t i o n   a n d   r e m a r k s :  Several fragments of

branches in transverse and longitudinal sections. Coral-
lites straight, densely packed. Radial elements subequal.
Septotheca. Epitheca thick. Corallite division visible.

All the corallites investigated are rather similar in diam-

eter and number of radial elements to those presented in
Koby (1888: p. 436—437, Pl. 114, Fig. 4) and also dis-
cussed in Morycowa & Roniewicz (1990).

O c c u r r e n c e :  The species is known from the age interval

late Oxfordian—late Kimmeridgian: Switzerland, northwest-
ern Spain; Romania (Dobruja), Poland (Pomerania), southern
Slovenia and Georgia; from Kimmeridgian/Tithonian: France
(Alpes Maritimes; Koby 1905) and generally from Upper Ju-
rassic from former Yugoslavia, as well as China (Tibet).

Cladophyllia  sp.

Fig. 6.3

M a t e r i a l :  Transverse section of corallites (thin section:

SNM Z 24210, together with Thecosmilia dichotoma Koby).

D i m e n s i o n s  (in mm): d cor = 5

×6; S=ca. 40 (S1—

S3 + nS4).

background image


Fig. 3.  1—3 – Enallhelia  vrsatecis n. sp., holotype, SNM Z 24223: 1 – longitudinal section of a branch, and transverse section of coral-
lites occurring in two rows along the branch. The section of the branch shows large dissepiments; 2—3 – enlarged septal portions from
Fig. 3.1, show (arrows) closely spaced trabecular centers (white dots) forming rather straight septal mid-line. Note also smooth lateral septal
faces. 4 – Stylosmilia corallina Koby, SNM Z 24186/1. Transverse section of corallites. 5 – Placophyllia aff. dianthus, SNM Z 24195/1,
transverse section of corallite. 6—8 – Placophyllia tenuis Roniewicz, SNM Z 24225: 6 – transverse section of corallites; 7—8 – enlarged
septa of the one of the corallites presented in Fig. 3.6, showing vestiges of origin septal microstructure (main and lateral trabecula cen-
ters – arrows) and distinct septal “ornamentation”.

background image

420                                                                              MORYCOWA and MIŠÍK

R e m a r k s :   Small fragment of phaceloid corallum be-

longing to the genus Cladophyllia, from which only one
transverse thin section could be made. The material is in-
sufficient for precise taxonomic identification of this spec-
imen. In corallite diameters the specimen resembles
Cladophyllia  excelsa  Koby from the “Astartian” of the
Jura Mts (Koby 1888) and Cladophyllia aff. excelsa Koby
from the Kimmeridgian of Czarnogłowy in Poland (see
Morycowa & Roniewicz 1990).

Family:  Euheliidae  de Fromentel, 1861

Genus:  Enallhelia Milne Edwards et Haime, 1849

Type species: Lithodendron compressum Goldfuss, 1829

Enallhelia vrsatecis n. sp.

Fig. 3.1—3

H o l o t y p e :  Specimen: SNM Z 24223, Fig. 3.1.
T y p e   l o c a l i t y :  Vršatec klippe near Vršatské

Podhradie,  Slovak part of the PKB, Western Carpathians
(site No. 22).

T y p e   h o r i z o n :  Vršatec Limestone (Oxfordian),

Czorsztyn Succession.

N a m e   d e r i v a t i o n :   vrsatecis – from the area of origin.
D i a g n o s i s :   Enallhelia with a corallite diameter rang-

ing from about 3 to 4.5 mm and number of costosepta
reaching maximum 40—48 (cycles I—III and mainly incom-
plete cycle IV).

M a t e r i a l :  The holotype only (No. SNM Z 24223)

composed of several fragments of branches embedded in
limestone, from which two thin sections were made.

M i c r o f a c i e s   t y p e  of coral-bearing limestones:

biomicrite with sponge spicules and radiolarians.

D i m e n s i o n s  (in mm): D of branches = 3—5; d cor = 3—


×3.5—4.5 (5); c—c in one range=4—6.5; S=24+nS4;

(6S1 + 6S2 +12S3 + nS4); den s = 6/2; den c = 6—8/2.

D e s c r i p t i o n :   Several branches of dendroid corallum

with short, subcylindrical corallites arranged in two rows
subalternatively along a branch. Corallites are thickened by
peritheca. Radial and simultaneously subbilateral symme-
try in the arrangement of septa can be seen. Bilaterality re-
sults from joining two opposite septa (sometimes slightly
thicker than other septa S1) with the columella. Septa S1
reach to the centre, septa S2 long but with differentiated
length, septa S3 short and some septa S4 only in the wall.
Columella small, styliform. Septothecal wall. Endotheca
composed of large, oblique vesicular dissepiments coming
from the wall (Fig. 3.1). Budding extracalicinal, lateral, sub-

M i c r o s t r u c t u r e :   Simple, straight row of trabecula

centres can be observed in some septa (Fig. 3.2—3).

R e m a r k :   The new species differs from the other Ju-

rassic and Cretaceous species from the genus Enallhelia
in larger corallite diameters and more numerous septa.
The new species is most similar to E. multiradiata de-
scribed by Zlatarski (1966) from the Lower Cretaceous
in Bulgaria. Therefore, it also differs from the latter in
larger corallite diameter (in E. multiradiata: d = ca. 2 mm,
S = more than 48 mm).

Suborder: Rhipidogyrina Roniewicz, 1976

Family:  Placophylliidae Eliášová, 1990

Genus: Placophyllia d’Orbigny, 1948

Type species: Lithodendron dianthus Goldfuss, 1826

Placophyllia tenuis Roniewicz, 1976

Fig. 3.6—8

v1976  Placophyllia tenuis Roniewicz, p. 68, Pl. 13, Fig. 5a,b
?1990  Placophyllia tenuis Roniewicz – Errenst, p. 196, Pl. 11, Fig. 5

M a t e r i a l :  One fragment of corallum: SNM Z 24225

(1 thin section, together with E. vrsatecis n. sp. and A. aff.
clermontei Lath.).

D i m e n s i o n s   (in mm):
Vršatec specimen: d cor = 4—5; S = 24 + nS4.
Holotype: (Roniewicz 1976: p. 68): d cor = 4—5; S = 12 +

12 + nS4.

D e s c r i p t i o n :  Phaceloid corallum. Corallites subcircu-

lar in transverse sections. Septa arranged in radial, hexamer-
al, but not clearly regular symmetry. They are differentiated
in two to four size orders depending on calicular diameters.
Septa S1 reach the corallite centre, other septa gradually
shorter, S4 short and occurring irregularly. Lateral surfaces
of septa with large granules, wall thin, epicostal. Columella
small, round or elongated. Thin epitheca can be seen in
transverse thin section. Budding extracalicinal, lateral.

M i c r o s t r u c t u r e :  Despite an advanced diagenetic al-

teration the neorhipidacanth  septal microstructure can be
seen (Fig. 3.7—8).

R e m a r k s :   P. tenuis has similar corallite diameters and

number of septa as P. minima Geyer from the Upper Juras-
sic of Portugal (Geyer 1955b; Rosendahl 1985). However,
it differs from the latter in lacking one better-developed
septum (see Roniewicz 1976).

The specimen described by Errenst (1990) as ?Pla-

cophyllia tenuis Roniewicz differs from the Romanian
specimens (Roniewicz 1976) in smaller corallite diameters
and less numerous radial elements.

O c c u r r e n c e :   lower Kimmeridgian: Romania (Dobruja)

and ?northwestern Spain.

Placophyllia  cf. dianthus (Goldfuss, 1826)

Fig. 3.5

1826  Lithodendron dianthus Goldfuss, p. 45, Pl. 3, Fig. 8
1875  Placophyllia dianthus Goldf. sp. – Becker, p. 140, Pl. 36,
                  Figs. 9a,b, 10
1970 Placophyllia dianthus (Goldfuss) – Beauvais, p. 1122—1123

v1976b  Placophyllia dianthus (Goldfuss) – Eliášová, p. 338—339, Pl. 1,
           Fig. 3; Pl. 2, Figs. 1, 2
v2003  Placophyllia dianthus (Goldfuss) – Kołodziej, p. 213, Fig. 27
          (here older and complementary synonymies)

M a t e r i a l :  Two thin sections of corallites: SNM Z

24195/1,2 (with Montlivaltiidae).

D i m e n s i o n s  (in mm): d cor = 5—6.5; S = 24—ca. 40

(S1—S3 + nS4).

R e m a r k s :   Fragmentary specimens, known from only

two cross-sections. They differ from those described in

background image


Fig. 4.  1—7 – Atelophyllia  aff. clermontei Lathuili

ère.  1 – corallite in transverse section (SNM Z 24226). Arrow shows the septum

presented in Fig. 4.2. 2 – enlarged septal portion from Fig. 4.1 showing slightly wavy mid-septal line (arrow). 3 – enlarged fragment
of septa from Fig. 4.1 showing minitrabecular centers (white spots) forming mid-septal line (arrows). 4 – transverse section of coral-
lites  A.  aff. clermontei (SNM Z 24229) and thin section of branch fragment of Dendraraea dendroidea (arrow).  5—7 – enlarged frag-
ments of corallites A.  aff. clermontei presented in Fig. 4.4, illustrating the build of the wall and lonsdaleoid-like septa of the higher
order (Fig. 4.5 – arrow).

background image

422                                                                              MORYCOWA and MIŠÍK

the literature as P. dianthus in slightly smaller corallite di-
ameter (i.e. d in Becker 1875 = 8—9 mm; in Beauvais
1970 = 4.5—9.5 mm). However, recently  Lauxmann (1991)
and Kołodziej (2003) have treated Placophyllia  rugosa
Becker, 1875 (having slightly smaller corallite diameter as
in Roniewicz 1966: d = 5—6 (6.5) mm) as a younger synonym
of  Placophyllia dianthus.  On this view our specimens fit
within the range of corallites diameter for this species.

O c c u r r e n c e :   upper Oxfordian: Poland (Holy Cross

Mts);  lower Kimmeridgian: France (Jura), Germany (Nat-
theim), Portugal;  upper Oxfordian—lower Kimmeridgian:
South Slovenia;  Tithonian—lower Berriasian: Czech Re-
public (Štramberk reg.); Tithonian—Berriasian, ?Valang-
inian: Poland (exotic limestones in Outer Carpathians);
Upper Jurassic: South Germany and Croatia.

Suborder: ?Pachythecaliina  Eliášová 1976, emend.

Roniewicz et Stolarski 2001

Family: Incertae sedis

Genus:  Atelophyllia Lathuilière, 2000

Type species: Atelophyllia clermontei Lathuilière, 2000

Atelophyllia  aff. clermontei Lathuilière, 2000

Fig. 4.1—7

2000 Atelophyllia clermontei Lathuilière, p. 165, 167, Figs. 21: 4—8

M a t e r i a l :  Two fragments of corallum: SNM Z 24226

(1 thin section) and SNM Z 24229 (1 thin section) imbed-
ded in reddish biomicritic limestone with radiolarians and
sponge spicules.

D i m e n s i o n s   (in mm):
Specimens from Vršatec Limestone: d cor small = 6


d cor larges = 8—10

×10—12; S=30—ca. 50; th s (max. thick-

ness, in middle part): S1 small corallite = 0.1; S1 large coral-
lite = 0.1—0.2; S1 wall zone, small corallite = 0.2—0.3, 0.3—0.5;
S1 wall zone, large corallite = 0.4—0.7, 0.3—0.5; den tr c = 3—
5/100 µm.

Holotype: (Lathuilière 2000: p. 167): d cor small = 5.8;

d cor larges = 11—13; S = 26—30; 37—48;  th s (max. thick-
ness) =150—375 µm, 75—325 µm.

D e s c r i p t i o n :  Phaceloid coralla. Corallites subcircular

in transverse sections. Radial elements arranged in radial, not
clearly regular symmetry. Septa are differentiated in two to
four size orders depending on calice diameter. They are com-
pact, generally thin, straight, flexuous or crooked, thickened
in the wall zone, gradually thinning towards the axial zone,
except septa S1 and S2, which are generally thickened at
their internal end where they sometimes form paliform struc-
tures. Short septa resembling lonsdaleoid ones can be ob-
served in some corallites (Fig. 4.5). Lateral surfaces of septa
are smooth, large irregular granules occur in places. Columel-
la parietal, weak. Wall thin, in continuation with septa. Thin
epitheca can be seen in transverse thin section.

Microstructure of septa finely trabecular with closely

packed centres (white dots), forming in places straight or
slightly wavy (see Fig. 4.2) septal mid-line. The fibres in
transverse wall section are similar in structure and arrange-
ment to those in the septa.

R e m a r k s :   The specimens presented here show close

similarity in the morphology and microstructure to Atelophyl-
lia clermontei Lathuilière (Lathuilière 2000). As the speci-
mens are incomplete, a precise identification was not possible.

On account of its minitrabecular microstructure of septa,

character of the wall and occurring lonsdaleoid (or ?lonsdale-
oid-like) septa, this genus has been included with reservation
in the suborder Pachythecaliina.

Occurrence:   lower Bajocian: North-East France (Flacé).

Suborder:  Astraeoina Alloiteau, 1952

Family:  Montlivaltiidae Dietrich, 1926

Genus:  Thecosmilia  Milne Edwards et Haime, 1848

Type species: Lithodendron trichotomum Goldfuss, 1826

Thecosmilia trichotoma (Goldfuss, 1826)

Fig. 5.1—8

1826  Lithodendron trichotomum Goldfuss, p. 45, Pl. 13, Fig. 6

v1884 Thecosmilia  trichotoma  Münster – Koby, p. 168—169, Pl. 45,
         Figs. 1, 1a, 2

1905  Thecosmilia trichotoma Münster – Koby, p. 848

?v1960  Thecosmilia trichotoma (Goldfuss) – Roniewicz, p. 454—456,
          Pl. 1, Figs. 1, 2; Pl. 2, Figs. 1—4; Pl. 3, Figs. 1, 2

1979  Thecosmilia trichotoma (Goldfuss) – Mišík, p. 19, Pl. 20,

Fig. 1

1982  Thecosmilia trichotoma (Goldfuss) – Bendukidze, p. 43—44,

Pl. 15, Fig. 5

1991  Thecosmilia trichotoma  (Goldfuss) – Lauxmann, p. 146—148
      (here supplementary synonymies)
1991 Thecosmilia trichotoma  (Goldfuss) – Lebanidze, p. 22—23,

Pl. 7, Fig. 3a,b

1993  Thecosmilia trichotoma  (Goldfuss) – Bertling, p. 90—91, Pl. 2,
        Figs. 3, 4

v1994 Thecosmilia trichotoma (Goldfuss) – Eliášová, p. 67,  Pl. 2,
         Figs. 1—4
?1996 Thecosmilia  cf. trichotoma (Goldfuss) – Baron-Szabo & Steu-
         ber, p. 13, Pl. 5, Figs. 3, 6

1997   Thecosmilia trichotoma (Goldfuss) – Turnšek, p. 206, Pl. 206,
        Figs. A—C
2003  Thecosmilia trichotoma (Goldfuss) – Helm et al., p. 81, 82

M a t e r i a l :  8 fragmentary coralla and 12 thin sections:

SNM Z 24183 (1 thin section), SNM Z 24185/1,2,3
(3 thin sections), SNM Z 24193 (1 thin section), SNM Z
24194 (1 thin section), SNM Z 24196 (1 thin section),
SNM Z 24202/1,2 (1 thin section), SNM Z 24203/1,2 (2 thin
section), SNM Z 24204 (1 thin section).

D i m e n s i o n s   (in mm):
Specimens described here: d adults = (14) 15—20 (22) ((25));

d during increase = ca. 20—25 (28) ((32)); S = ca. 70—90
(100); th s (max. thickness between carenes ) :  S 1 and
S2 = (0.2) 0.3—0.5 (0.6), S3 = 0.3—0.4, S4 = 0.1—0.15 (0.2); den
c = ca. (5) 7—8 (9)/5; den car = 3—5(6)/2; den end (central
part) = ca. 5—6/5.

Koby (1884: p. 16): d cal (adults) = 15—18; S = 80—90;

den c = 9—10/5.

D e s c r i p t i o n   a n d   r e m a r k s :  Fragments of phaceloid

coralla, composed of short, subcylindrical corallites, oval or
subcircular in transverse sections. Costosepta generally
thin, differentiated in four to five size orders. Septa of two
first size orders are subequal and reach corallite centre. Septa

background image


Fig. 5.  1—8 – Thecosmilia trichotoma (Goldfuss).  1—2 – SNM Z 24194: 1 – transverse section of corallite; 2 – enlarged fragment
of septa from Fig. 5.1 shows the difference in thickeness between septum S1 and S3 (below). 3, 7 – SNM Z 24202/1,2: 3 – thin lon-
gitudinal corallite section (2) showing dense endothecal dissepiments; 7 – transverse section of corallite (1) during the budding.
4—6 – SNM Z 24203/1: 4 – transverse section of corallites; 5 – enlarged portion of the corallite presented in upper part of Fig. 5.4,
showing relics of original septal microstructure (black line); 6 – more enlarged septum fragment of the same specimen, showing
montlivaltiid type microstructure. Arrows show centres of lateral trabeculae and simultaneously the transverse carena sections.
8 – fragment of limestone with poorly preserved (damaged) calicular surfaces of Th. trichotoma (SNM Z 24202).

background image

424                                                                              MORYCOWA and MIŠÍK

of the highest order are very short, thin and of varying num-
ber. Structure of septa, wall and endotheca does not differ
from those described from Upper Jurassic of many other Eu-
ropean regions. Some differences concern only the slightly
lower costal density in the Slovak species in comparison
with Swiss or other specimens (Koby 1884, costal density:
9—10/5). However some specimens described as Th.  tri-
chotoma  have also lower  costal  density, including those
described by Morycowa (1974) from Tithonian exotic lime-
stones of Polish Outer Carpathians (den c = 7—8/5 mm) and
from South Portugal (Rosendahl 1985: den c = 8—9/5 mm).

Th. trichotoma described by some authors from Early Cre-

taceous (including the Aptian; Baron-Szabo & Steuber
1996) require verification.

O c c u r r e n c e :  Almost cosmopolitan in the upper Ox-

fordian-Kimmeridgian shallow water marine deposits of the
European regions: Switzerland (also middle Oxfordian),
France, England, Slovenia, South Portugal, Spain, Germany
(Würtemberg, Lower Saxony), Poland (Holy Cross Mts),
Ukraine (Crimea), Georgia (Caucasus), and rarely in the Ti-
thonian: Czech Republic (Štramberk reg.), Poland (Outer
Carpathians; exotic limestone) and Serbia, as well as in the
?Lower Cretaceous in Greece.

Thecosmilia dichotoma Koby, 1884

Fig. 6.1—3

v1884   Thecosmilia  ?dichotoma Koby, p. 175, Pl. 46, Figs. 4—8

1954  Thecosmilia ?dichotoma Geyer, p. 182, Pl. 14, Fig. 15
1955a  Thecosmilia dichotoma Koby – Geyer, p. 200

v1966  Thecosmilia dichotoma Koby – Roniewicz, p. 212, Pl. 12,
           Fig. 3a,b

1972  Thecosmilia dichotoma Koby – Turnšek, p. 175—176, Pl. 13,
         Figs. 3, 4

v1974  Thecosmilia dichotoma Koby – Morycowa, p. 466, Pl. 5, Fig. 1
v1976a  Thecosmilia dichotoma Koby – Eliášová, p. 169, Pl. 1,
            Fig. 2
v1979  Thecosmilia dichotoma Koby – Mišík, p. 19

1982  Thecosmilia dichotoma Koby – Bendukidze, p. 50
1985  Thecosmilia dichotoma Koby – Rosendahl, p. 47, Pl. 1, Fig. 7
1991  Thecosmilia dichotoma Koby – Lauxmann, p. 149, Pl. 6,
          Fig. 10
1991  Thecosmilia dichotoma Koby – Lebanidze, p. 21—22, Pl. 7,
         Fig. 2a,b
1997  Thecosmilia dichotoma Koby – Turnšek, p. 204, Pl. 204,
          Figs. A—D

M a t e r i a l :  5 incomplete coralla and 8 thin sections:

SNM Z 24184/1,2 (2 thin sections), SNM Z 24189 (1 thin sec-
tions), SNM Z 24190 (1 thin section), SNM Z 24206 (1 thin
section), SNM Z 24207 (1 thin section), SNM Z  24208 (1 thin
section), SNM Z 24210 (1 thin section, together with Cla-
dophyllia sp.).

D i m e n s i o n s   (in mm):
Vršatec specimens: D (SNM Z 24190) = 45

×110; H (SNM Z

24190) = ca. 80; d young = (8) 10; d adults = 11—13—15 (16);
c—c = 13—30; cor—cor = 1—10; S = 36—40—ca. 50;  th s (max.
thickness) = S1 and S2 = (0.25) 0.3—0.43, S3 = 0.12—0.2;
den c = 6—8/5; den car  (transv. sect., peripheral) = 3  (4)/2;
den end (central part) = 5—6/5.

Koby (1884): d young = 5 —10; d adults = 10—15; S = 4

cycles and some of 5 cycle; den c = 8 /5.

D e s c r i p t i o n   a n d   r e m a r k s :  Fragments of phaceloid

coralla belonging to the genus Thecosmilia. On account of
corallite diameters and the number of radial elements they
were included into Thecosmilia dichotoma Koby.

According to some authors  Th. dichotoma Koby survived

until the Early Cretaceous (Baron-Szabo & Steuber 1996:
p. 14).

O c c u r r e n c e :  Age interval: late Oxfordian—late Kim-

meridgian: Switzerland, South Portugal, Germany (Wür-
temberg), Poland (Holy Cross Mts), Slovenia, Ukraine
(Crimea), Georgia (Caucasus); Tithonian: Czech Republic
(Štramberk region) and Poland: Outer Carpathians (exotic
limestone); ?Aptian: Central Greece.

Thecosmilia  aff. dichotoma Koby, 1884

Fig. 6.4

v1884  Thecosmilia  ?dichotoma Koby, p. 175, Pl. 46, Figs. 1—8 (syn-
        onymy as in the description of Th. dichotoma Koby above)


M a t e r i a l :


One incomplete corallum: SNM Z 24205

(1 thin section).

D i m e n s i o n s   (in mm): d adults = 16.5—18; S = ca.

40—50; den c = 7—8/5.

R e m a r k s :  Specimen described here resembles those

of  Th.  dichotoma  at the adult stage, in number and ar-
rangement of septa. However, it differs in having larger
corallite diameters.

O c c u r r e n c e :   Th. dichotoma  occurs in the  Oxford-

ian—Tithonian of European regions.

Thecosmilia  sp.

M a t e r i a l :  Fragments of corallites: SNM Z 24218/1,2

(2 thin sections).

D i m e n s i o n s   (in mm): d adults = 8 —13; den s = 6—8/5.
R e m a r k s :   Poorly preserved fragments of phaceloid

coralla. On account of the morphology of corallites and
micromorphology of radial elements they are included in
the genus Thecosmilia  Milne Edwards et Haime.

Genus: Complexastrea d’Orbigny, 1849

Type species: Astrea rustica Defrance, 1826

Complexastrea carpathica Morycowa, 1974

Fig. 6.6,7

v1974  Complexastraea  carpathica Morycowa, p. 470—472, Text-Fig. 7,
         Pl. 7, Fig. 1; Pl. 10, Fig. 3; Table 2
v1976a Complexastraea  carpathica Morycowa – Eliášová, p. 174
v1979  Complexastraea carpathica Morycowa – Mišík, p. 19, Pl. 20, Fig. 2

  M a t e r i a l :  Two incomplete colonies and 3 thin sec-

tions:  SNM Z 24216 (1 thin section), SNM Z 24214/1,2
(2 thin sections).

D i m e n s i o n s  (in mm):
Slovak specimens: d cor = 8—13; c—c = 8—12; S = ca. 36—

38 + nS4; den s = 10—11/5; th s (max. thickness) = S1 = 0.16—
0.20, S2 = 0.09—0.15, S3 = 0.08—0.09; den car = (4) 5—7/2;
den end = ca. 10—12/5.

background image


Fig. 6. 1—3  –  Thecosmilia dichotoma Koby, transverse section of corallites (1 – SNM Z 24184/1; 2 – SNM Z 24190;
3 – SNM Z 24210). In Fig. 6.3 corallite Th. dichotoma during increase and transverse section of Cladophyllia sp. showed by arrow.
4  –  Thecosmilia  aff. dichotoma Koby, SNM Z 24205, transverse section of corallite. 5 – ?Complexastrea  sp., SNM Z 24187 present-
ing transverse thin section of corallites. 6—7 – Complexastrea carpathica Morycowa, SNM Z 24214/1: 6 – transverse section of cor-
allites (see Mišík 1979, Pl. 20); 7 – enlarged fragment of some septa from Fig. 6.6 showing characteristic montlivaltiid septal
microarchitecture. 8 – Complexastraeopsis kouteki Eliášová, SNM Z 24199, transverse section of colony fragment showing corallites sin-
gles and arranged in series (see Mišík 1979: Pl. 20).

background image

426                                                                              MORYCOWA and MIŠÍK

Polish specimens (Morycowa 1974): d cor = 7—12 (13);

c—c = 7—12 (13); S = 36—46; den s = 10—12/5; th s (max. thic-
kness) = S1 – 0.15—0.20 (0.3), S2 – ca. 0.1, S3 – ca. 0.08;
den car = 4—6/2; den end = 11—13/5.

D e s c r i p t i o n :  Massive, incomplete colonies. Coral-

lites subpolygonal with subcircular calices. Columellar
space small, slightly elongated. Costosepta non- or subcon-
fluent, 36—38 in number, very thin, but with length and
thickness depending on size orders. 10 to 12 of them almost
reach the centre of corallites. Septa S3 and S4 occur irregu-
larly and in varying numbers. Lateral septal faces with well
developed carenae. Endotheca composed of tabuloid ele-
ments, concave in the central part of corallites and convex
in their peripheral parts. Vesicular dissepiments present
mainly in peripheral corallite zones.

R e m a r k s :  Slovak specimens coming from the Oxfordian

biohermal white limestones (Mišík 1979: p. 19) are almost
identical with those described from the Polish Carpathians
(Morycowa 1974). C. carpathica shows similarity to other
Late Jurassic species such as Complexastrea thevenini Etallon
and  C. carinata Roniewicz, but differs from these species
mainly in smaller corallite diameters and slightly lower  num-
ber of costosepta (see Morycowa 1974: Table 2).

O c c u r r e n c e :   upper Tithonian: Czech Republic (Štram-

berk region), Poland (Outer Carpathians (exotic limestones)).

?Complexastrea  sp.

Fig. 6.5

M a t e r i a l :  One thin section: SNM Z 24187.
Dimensions  (in mm): d cor = 4—7; d l = 2.5—3.5; c—c = 5—

7; S = 24S1—S3 + nS4; den s = 10—12/5; den car = 4—5/1.

D e s c r i p t i o n :  Subpolygonal corallites with subcircu-

lar or oval lumen. Septa differentiated in three size orders,
septa S1 and S2 (ca. 12) subequal and with auricula-like
forms. The remaining septa gradually shorter and occurrring
less regularly. Traces of the montlivaltiid-type microstruc-
ture visible in some septa. Paraseptotheca, incomplete.

R e m a r k s :  The specimen is studied only on the basis of

the one transverse thin section, thus it could be only, with
reserve, placed in the genus Complexastrea.

Genus:  Complexastraeaopsis Morycowa, 1974

Type species: Complexastraea lobata Geyer, 1965

Complexastraeopsis kouteki Eliášová, 1976

Fig. 6.8

1976a Complexastraeopsis kouteki Eliášová, p. 175—176, Pl. 8, Fig. 1a,b
1979  Complexastraeopsis kouteki Eliášová – Mišík, p. 19, Pl. 20, Fig. 3

M a t e r i a l :  One specimen SNM Z 24199 (1 thin section).
D i m e n s i o n s   (in mm):
SNM Z 24199: d cor individual = ca. 10—11; width of se-

ries = 7—11; c—c in series = 5—9; c—c between series = 6—14;
S (cor adults) = ca. 38—56; den s = 9—11/5; den end (axial
zone) = 9—10/5.

Eliášová (1976a): d calices = 10—12; width of series = 8—

10; c—c in series = 4—11; c—c between series = 10—14; S
(cor adults) = 43—ca. 50; den s = 8—10/5; den end = 9—12/5.

D e s c r i p t i o n   a n d   r e m a r k s :  Massive, incomplete

colony. Corallites subpolygonal with subcircular calices, in
places forming short series within which the corallites are
connected by one to four “septes de vallée”. Generally, its de-
scription fully corresponds to that given by Eliášová (1976a).

O c c u r r e n c e :   Tithonian: Czech Republic (Šramberk


Family:  Isastraeidae Koby, 1889, emend. Alloiteau, 1952

Genus:  Isastrea  Milne Edwards et Haime, 1851

Type species: Astrea helianthoides (Goldfuss, 1826)

Isastrea helianthoides (Goldfuss, 1826)

Fig. 7.6,7

1826  Astrea helianthoides Goldfuss, p. 65,  Pl. 22, Fig. 4a (not

Fig. 4b)

1990  Isastraea helianthoides (Goldfuss) – Errenst, p. 193—194, Pl. 11,

Fig. 2a—2c. (here older and supplementary synonymies)

1973 Isastraea helianthoides (Goldfuss) – Babaev, p. 102, Pl. 9, Fig. 2
1982  Isastrea helianthoides (Godfuss) – Bendukidze, p. 58, Pl. 13,
       Fig. 5; Pl. 18, Figs. 3, 4
1991 Isastrea  helianthoides (Goldfuss) – Lauxmann, p. 154—155, Pl. 7,

Figs. 4, 5

1993  Isastrea helianthoides (Goldfuss) – Pandey & Fürsich, p. 54, Pl. 14,

Figs. 4, 5

1993  Isastrea helianthoides (Goldfuss) – Bertling, p. 94—95, Pl. 2,

Figs. 3, 4

1994 Isastraea helianthoides (Goldfuss) – Eliášová, p. 67, Pl. 1, Fig. 2
1994  Isastraea helianthoides (Goldfuss) – Liao & Xia, p. 165,  Pl. 47,

Figs. 4—6

1997  Isastraea helianthoides (Goldfuss) – Turnšek, p. 107, Pl. 107A—E
2003 Isastrea  helianthoides (Goldfuss) – Pandey & Fürsich, p. 54
2003  Isastrea helianthoides (Godfuss) – Helm et al., p. 83

M a t e r i a l :  5 fragments of colonies and 7 thin sections:

SNM Z 24197/1,2 (2 thin sections), SNM Z 24198 (1 thin
section), SNM Z 24192 (1 thin section), SNM Z 24215/1,2
(2 thin sections), SNM Z 24219 (1 thin section).

D i m e n s i o n s   (in mm): d = 5—9; c—c = 4.5—8; S = 30—60;

th s (max. thickness between carenae) = 0.2—0.3; den
s = 9—12/5; den car (near wall) = 6—8/2.

D e s c r i p t i o n   a n d   r e m a r k s :  Incomplete, massive

and lamellar, cerioid colonies. Corallites polygonal in
transverse section. Columella parietal, weak. The diame-
ter of corallites, number and density of septa show that
they represent I.  helianthoides (Goldfuss). The species
discussed is very well known from the Upper Jurassic de-
posits of Europe and does not need detailed description.

The specimen Isastrea helianthoides from the lower Call-

ovian of Iran (see Pandey & Fürsich 2003: Pl. 14, Fig. 5b)
has  “Septa of adjacent corallites generally confluent”, which
raises doubts about their belonging to the genus Isastrea.

O c c u r r e n c e :  The species is known from the age in-

terval  middle Oxfordian—late Kimmeridgian in France,
Germany,  Northwestern Spain,  SW and NW Germany,
Poland (Holy Cross Mts),  Romania (Dobruja), Slovenia,
Czech Rep. (Moravia), Georgia (Caucasus),  Azerbaijan
(Lesser Caucasus)  and Ukraine (Crimea), as well as gen-
erally from the Late Jurassic in  China (Tibet). This spe-
cies was described recently from the lower Callovian of
East-central Iran.

background image


Fig. 7.  1—5 – Isastrea robusta n. sp., holotype, SNM Z 24200: 1 – transverse section of corallites (SNM Z 24200/1); 2  – enlarged
portion of Fig. 7.1 showing corallites with thick radial elements and well-developed septo-parathecal wall (w); 3 – longitudinal section
of corallite (SNM Z 24200/2) showing vesicular endothecal dissepiments; 4 – enlarged septum S2 from the thin transverse section pre-
sented in Fig. 7.1, showing traces of the centres of thick trabeculae; 5 – fragment of the calicular surface of colony (see Mišík 1979:
Pl. 9, Fig. 1). 6—7 – Isastrea helianthoides (Goldfuss): transverse section of corallites (6 – SNM Z 24192; 7 – SNM Z 24198).

background image

428                                                                              MORYCOWA and MIŠÍK

Isastrea robusta n. sp.

Fig. 7.1—5

H o l o t y p e :   SNM Z 24200; Fig. 7.1—5.
Derivatio of name:  robusta (Lat.) – after strong septa.
T y p e   l o c a l i t y :  Vršatec, Vršatec Limestone; Oxfordian.
D i a g n o s i s :   Isastrea  with up to 40 thick septa sub-

equal in thickness, at 8—10 mm corallite diameters. Septal
density near wall zone is 5—6 per 5 mm and density of
carenae – 5 per 2 mm.

M a t e r i a l :   Two colonies and 4 thin sections:

SNM Z 24200/1,2 (2 thin section), SNM Z 24201/1,2
(2 thin section).

D i m e n s i o n s  (in mm): D = ca. 100

×150; H=ca. 30;

d = 8—10; c—c = 8—11; S = c a. 24—32(40); th s (max. thick-
ness between carenae) S1 and S2 = 0.5—0.6; den s = 5—6/5;
den car (near wall) = 3—5/2; car-car = 0.3—0.5.

D e s c r i p t i o n :  Lamellar, cerioid colonies. The holotype

shows altered upper colony surface. Corallites rather regular-
ly polygonal in transverse section. Gemmation intracalicinal
with lamellar linkages. Septa thick, arranged in three rarely
four, size orders. Septa S1 and S2 subequal, S3 and S4 thinner
and usually considerably shorter. Lateral septal faces with
granules fuse to form carinae. Axial cavity narrow, in some
corallites weak parietal columella can be formed. Septothecal
wall well marked. Dissepiments vesicular, slightly inclined
in peripheral zone and subtabuloid in corallite axial zone.

Microstructure: The skeletons are recrystallized but

vestiges of primary microstructure and lateral septal microar-
chitecture are preserved in places. The microstructure is char-
acteristic of the montlivaltiids.

Remarks: Variety in the number of septa and corallite di-

ameters is important for the species identification. These two
specimens have fewer and thicker septa than other known
Isastrea with the same corallite diameters. Thus they are de-
scribed as a new species Isastrea  robusta  n. sp.

I.  robusta n. sp. differs from the Isastrea helianthoides in

larger corallite diameter, thicker and less dense septa. It is
most similar to I. crassiseptata Becker from the Kelheim
(Becker 1875), which has 6—8 mm corallite diameters and
40—50 strong, subequal in thickness, septa.

Family:  Dermosmiliidae Koby, 1889

Genus:  Calamophylliopsis Alloiteau, 1952

Type species: Calamophyllia flabellata de Fromentel,


Calamophylliopsis stockesi (Milne Edwards et Haime,


1850—1854 Calamophyllia  stockesi Milne Edwards et Haime, p. 89—91,

Pl. 16, Fig. 1, 1a—d

     1857 Calamophyllia  stockesi  Milne Edwards et Haime – Milne-

Edwards & Haime, t. II, p. 344

      1888 Calamophyllia  stockesi Milne Edwards et Haime – Solom-

ko, p. 134—135, Pl. 2, Fig. 11

       1913  Calamophyllia  cf. stokesi Milne Edwards et Haime – Speyer,

p. 222, Pl. 22, Fig. 25

      1937  Calamophyllia  stockesi  Milne Edwards et Haime – Mir-
                   chink, p. 70—71, Pl. 1, Fig. 6

    1949   Calamophyllia  stockesi  Milne Edwards et Haime – Bendu-

kidze, p. 80—81


 1964 Calamophyllia  stockesi  Milne Edwards et Haime – Ko-

losvary, p. 220, Pl. 1, Figs. 8, 25; Pl. 9, Fig. 3

    1991 Calamophylliopsis stockesi (Milne Edwards et Haime) –Leb-

anidze, p. 30, Pl. 11, Fig. 1a; Pl. 12, Fig. 1a,b


1997  Calamophylliopsis stockesi (Milne Edwards et Haime) –Turn-

šek, p. 30, Fig. 30  (here complementary synonymies)

     2003 Calamophylliopsis stockesi (Milne Edwards et Haime) –Helm

et al., p. 83, Fig. 8C



Corallum fragments and 1 thin sections:

SNM Z 24191.

D i m e n s i o n s  (in mm): d cor = 3 .5—6.5 (7); c—c = 6 —10;

S = c a. 40—60.

R e m a r k s :  Fragments of phaceloid corals with round

or slightly oval corallites in cross-sections. Character of
skeleton strongly suggests they belong to Calamophylli-
opsis stockesi (Milne Edwards et Haime).

O c c u r r e n c e :   middle Oxfordian—Kimmeridgian: France,

England, Germany (e.g. Kelheim, Lower Saxony), Poland
(Holy Cross Mts), Slovenia, Romania (Dobruja), northwest-
ern Spain, south Portugal, Ukraine (Crimea) and Georgia
(Caucasus);  Tithonian: Serbia. It seems that Calamophylli-
opsis stockesi from the Upper Jurassic of Hungaria (Transyl-
vania; Kolosvary 1964) does not represent this species (see
Kolosvary 1964: Pl. 1, Fig. 25).

Calamophylliopsis moreauana (Michelin, 1843)

Fig. 8.9

1843  Lithodendron moreausiacum Michelin, p. 95, Figs. 3, 4
1990 Calamophylliopsis  moreauana  (Michelin) – Errenst, p. 202, Pl. 12,

Fig. 8a,b (here older and complementary synonymies)

1994  Calamophylliopsis moreauana (Michelin) – Liao et Xia, p. 116,

Pl. 22, Figs. 6—9


 Calamophylliopsis moreauana (Michelin) – Turnšek, p. 29,

Fig. 29A—E

2002  Calamophylliopsis moreauana (Michelin) – Löser et Mori,

p. 97—99, Fig. 8.6,7

2003 Calamophylliopsis moreauana (Michelin) – Helm et al., p. 82, 83

M a t e r i a l :   One small fragment of corallum (thin sec-

tion: SNM Z 24220).

D i m e n s i o n s   (in mm): d cor=3.5—5; d l=2.2—3.5;

c—c = c a. 6—8; S = t o 40—50;  den c = c a. 8—9/2.

R e m a r k s :  Fragment of a branching corallum repre-

senting  Calamophylliopsis moreauana (Michelin).

O c c u r r e n c e :   upper Oxfordian—Kimmeridgian: Spain,

France, Switzerland, Poland (Holy Cross Mts), Slovenia,
Romania (Dobruja), China (Xizang); Oxfordian  to Kim-
meridgian: Japan. The species is cited (Helm et al. 2003)
from the middle Oxfordian of NW Germany (Lower Saxony).

Family:  Kobyastraeidae  Roniewicz, 1979

Genus:  Kobyastraea  Roniewicz, 1979

Type species: Kobyastraea lomontiana Étallon, 1864

Kobyastraea bourgeati (Koby, 1887)

Fig. 8.5,6

1887  Thamnastrea Bourgeati Koby, p. 369, Pl. 100, Figs. 5, 6
1969  Kobyastraea bourgeati (Koby) – Caratini & Beauvais, p. 27,

Pl. 2, Fig. 8a,b

background image


Fig. 8.  1—4 – Periseris elegantula (d’Orbigny), SNM Z 24212: 1 – specimen composed of two different coral colonies. Isastrea  colony
(upper part) and Periseris  colony (lower part); 2 – calicular surface of the colony Periseris elegantula, presented in Fig. 8.1; 3 – en-
larged fragment of thamnasteroid colony Periseris elegantula from Fig. 8.2 showing septa with well developed menianes; 4 – transverse
section of colony fragment. 5—6 – Kobyastraea  bourgeati  (Koby), SNM Z 24211/1,2: 5 – transverse section (1); 6 – longitudinal sec-
tion (2). Note tabuloid endothecal elements. 7 – Microsolenidae, gen. et sp. indet., SNM Z 24209, longitudinal section. 8  –  Dendraraea
dendroidea (Ferry), SNM Z 24230, transverse section of some branches (see Mišík 1979: Pl. 10, Fig. 2). 9 – Calamophyllopsis moreaua-
na (Michelin), SNM Z 24220, tranverse section of corallites.

background image

430                                                                              MORYCOWA and MIŠÍK

1991  Kobyastraea bourgeati (Koby) – Errenst, p. 13—14, Pl. 16,

Fig. 1a—e, (here older synonymies)

M a t e r i a l :  1 colony SNM Z 24211/1,2 (2 thin sections).
D i m e n s i o n s   (in mm): c—c = 1.2—2.5 (3); S = 20—28; den

tr c = 5—6/1.

R e m a r k s :  Small thamnasterioid colony. Septa thick,

all subequal in thickness, confluent, arranged most fre-
quently in three size orders; 10 to 12 reach to the centre.
Anastomosis present. Lateral septal faces with flattened
granules. Axial cavity small, with parietal columella
formed of styliform, slightly oval form and septal paliform
teeth. Synapticulotheca incomplete. Dissepiments subtab-
ular, concave in corallite centre and with vesicular ele-
ments in peripheral zone.

O c c u r r e n c e :   upper Oxfordian—lower Kimmeridgian:

Poland (Holy Cross Mts); lower Kimmeridgian: Portugal,
France, Algeria; Kimmeridgian: NE Spain.

Suborder:  Microsolenina  Morycowa et Roniewicz, 1995

Family:  Latomaeandridae Alloiteau, 1952

Genus:  Periseris Ferry, 1870

Type species: Agaricia elegantula d’Orbigny, 1850

Periseris  elegantula (d’Orbigny, 1850)

Fig. 8.1—4

1850  Agaricia elegantula d’Orbigny, t. 1, p. 293
1990  Periseris  elegantula (d’Orbigny) – Lathuilière, p. 38, Pl. 1—5

(here older and complementary synonymies)

1993  Periseris  elegantula d’Orbigny – Pandey & Fürsich, p. 37,

Text-Fig. 22, Pl. 11, Fig. 2

2000 Periseris  elegantula (d’Orbigny) – Lathuilière, p. 157, Fig. 13.1,2
2001  Periseris  elegantula d’Orbigny – Pandey & Fürsich, p. 486
2003  Periseris  elegantula d’Orbigny – Pandey & Fürsich, p. 94—96

M a t e r i a l :  1 colony: SNM Z 24212 and 1 thin section.
D i m e n s i o n s   (in mm): c—c = 3—6; S = 20—30; th S1

(thickness with menianes, in middle part) = 0.5—0.6; den
s = 4—7/3; den d (distal edge) = 3—4/1.

R e m a r k s :  Small colony sublamellar, thamnasterioid.

The specimen agrees well with Periseris  elegantula
(d’Orbigny). The species is very well known mainly from
the Bajocian deposits. Recently it has been described in
detail by Lathuilière (1990).

O c c u r r e n c e :   lower Bajocian: northeastern France

(Flacé);  upper Bathonian—upper lower Callovian: West-
ern India (Pandey & Fürsich 2001), Middle Jurassic: Iran.

Family:  Microsolenidae Koby, 1889

Dendraraea  d’Orbigny, 1849

Type species: Alveopora racemosa Michelin, 1843

Dendraraea  cf. dendroidea (Ferry, 1861)

Fig. 8.8

1998  Dendraraea dendroidea (Ferry) – Lathuilière & Gill, p. 150,

Pl. 1, Figs. 3—8; Pl. 2, Figs. 1—7; Pl. 3, Figs. 2, 4—6; Pl. 4,
Figs. 5, 6; Pl. 6, Figs. 1, 3

2000  Dendraraea dendroidea (Ferry) – Lathuilière, p. 155—157,

Fig. 12.4,6,8, (here older synonymies)

2003  Dendraraea dendroidea (Ferry) – Pandey & Fürsich, p. 116,

Pl. 33, Fig. 4

M a t e r i a l :  Several fragmentary branches in 8 thin sec-

tions: SNM Z 24217/1 (together with  Cladophyllia rollieri),
SNM Z 24217/2, SNM Z 24221, SNM Z 24224  together  with
branche fragment of the E. vrsatecis n. sp. and ?Isastrea  sp.),
SNM Z 24227, SNM Z 24228, ?SNM Z 24229  (together  with
Atelophyllia  aff. clermontei), as well as one thin section
SNM Z 24230 (in Mišík 1979: Pl. 10, Fig. 2; Loc. 42).

D i m e n s i o n s   (in mm): D of branches = 6—9.5; den s

(long. sect.) = 4—6/2; den pen (longit. sect.) = 3—4/1; S = to
30; c-c = ca. 5.

R e m a r k s :   The scarce and poorly preserved coral

branch fragments do not allow its precise taxonomic identi-
fication. They can only be classified as Dendraraea cf. den-
droidea. Detailed study of the species D. dendroidea and its
comparison with other species of this genus (including the
Upper Jurassic  D.  racemosa (Michelin)) were presented in
Lathuilière & Gill (1998) and Lathuilière (2000).

O c c u r r e n c e :  This species is rather widely distributed

in the Middle Jurassic (Bajocian: Eastern France, Moroc-
co;  lower Callovian: Iran), but it also occurs in the Upper
Jurassic (personal communication from E. Roniewicz).

Gen. et sp. indet.

Fig. 8.7

M a t e r i a l :  Fragments of lamellar colonies: SNM Z

24188 (1 thin section), SNM Z 24209 (1 thin section),
SNM Z 24222 (1 thin section, together with Porifera).

D i m e n s i o n s   (in mm): den s (longit. sect.) = 5/2; den

pen (longit. sect.) = 5 /2.

R e m a r k s :   Longitudinal sections of a microsolenid

can be observed in one longitudinal section. Their more
precise identification is impossible, as transverse sections
cannot be obtained.

Acknowledgments: We would like to express our sincere
thanks to the reviewers, Prof. Ewa Roniewicz, Dr. Dragica
Turnšek and one other unknown Reviewer, for their help-
ful comments and corrections of the manuscript. We are
grateful to Ms Janina Ozga for linguistic corrections and
Mr Waldemar Obcowski for his help in computer graphics.


Alloiteau J. 1952: Madréporaires post-paléozoiques. In: Piveteau

J. (Ed.): Traité de Paléontologie 1, 539—684.

Alloiteau J. 1957: Contribution 

à la systématique des madréporai-

res fossiles. Th

èse, C.N.R.S., 2 vols., Paris, 1—462.

Andrusov D. 1953: Etude géologique de la zone des Klippes In-

ternes des Karpates Occidentales. Geol. Práce 34, Slov. Akad.
Vied a Umení 5—147.

Babaev R.G. 1973: Late Jurassic hexacorallian corals (Scleractinia)

of north-easter part of Lesser Caucasus (Azerbaydjan). ELM,
Baku, 3—166 (in Russian).

Baron-Szabo R.C. & Steuber T. 1996: Korallen und Rudisten aus

dem Apt im Tertiären Flysch des Parnass Gebierges bei Del-

background image


phi-Arachowa (Mittelgriechenland). Berliner Geowiss. Abh.
(E) 18, 3—75.

Beauvais L. 1970: Sur quelques genres nouveaux ou peu connus

de Madréporaires jurassiques. Eclogae Geol. Helv. 63, 3,

Becker E. 1875: Die Korallen der Nattheimer Schichten (1).

Palaeontographica 21, 121—164.

Bendukidze N. 1949: Late Jurassic corals of western part of Ab-

chasija and south Ossetia. Trudy Geol. Inst.  (Tbilisi),  Ser.
Geol. 5, 10, 55—172 (in Russian).

Bendukidze N. 1982:  Late Jurassic corals of reefal deposits of

Caucasus and Crimea.  (Coraux hermatypiques du Jurassique
supérieur du Caucase et de la Crime). Akad. Nauk. Georgie
SSR. Geol. Inst. 74, 1—166 (in Russian).

Bertling M. 1993: Riffkorallen im norddeutschen Oberjura – tax-

onomie, oekologie, Verteilung. Palaeontographica  (A) 226,
4—6, 77—123.

Caratini C. & Beauvais L. 1969: Les polypiers du Kimméridgien

inférieur de Chellala-Reibell (Département de Médéa—Algé-
rie). Publ. Serv. Géol. Algérie, Bull. (Nouv. Sér.) No. 39, 19—39.

Eliášová H. 1976a: Famille Montlivaltiidae Dietrich, 1926 (Hexa-

corallia) des calcaires de Štramberk (Tithonien, Tchécoslova-
quie). Čas. Mineral. Geol. 21, 2, 167—183.

Eliášová H. 1976b: Familles Placosmiliidae Alloiteau, 1952 et Mi-

sistellidae nov. fam. (Hexacorallia) des calcaires de Štram-
berk (Tithonien, Tchécoslovaquie). Čas. Mineral. Geol. 21,
4, 337—347.

Eliášová H. 1976c: Les coraux de l’ordre Hexanthiniaria Montan-

aro Gallitelli, 1975, Zoantharia de Blainville, 1830 dans les
calcaires de Štramberk (Tithonian, Tchécoslovaquie). Věst.
Ústř. Úst. Geol. 51, 6, 357—366.

Eliášová H. 1990: Coraux des calcaires d’Ernstbrunn (Jurassique

supérieur-Crétacé inférieur dans les Carpathes externes, zone
de Waschberg, Tchécoslovaquie. Čas. Mineral. Geol. 35, 2,

Eliášová E. 1994: Scleractiniaires de Stranska skala (Oxfordien in-

ferieur/supérieur, Brno, Moravie, Republique Tch


Věst. Čes. Geol. Úst. 69, 4, 65—74.

Errenst C. 1990: Das korallenführende Kimmeridgium der nord-

westlichen iberischen Ketten und angrenzenden Gebiete (1).
Palaeontographica  (A) 214, 121—207.

Errenst C. 1991: Das korallenführende Kimmeridgium der nord-

westlichen iberischen Ketten und angrenzenden Gebiete (2).
Palaeontographica  (A) 215, 1—42.

Geyer O.F. 1954: Die oberjurassische Korallenfauna von Würt-

temberg.  Palaeontographica (A)104, 121—220.

Geyer O.F. 1955a: Beiträge zur Korallenfauna des Stramberger

Tithon.  Paläont. Z. 29, 1, 4, 177—216.

Geyer O.F. 1955b: Korallen-Faunen aus dem Oberen Jura von

Portugal.  Senckenberg. Lethaea 35, 5, 6, 317—356.

Gill G.A. 1967: Quelques precisions sur les septes perforés des

polypiers mésozo

ïques.  Mém. Soc. Géol. France,  Nov. Sér.

106, 57—83.

Goldfuss A. 1826—1829: Petrefacta Germaniae. Düsseldorf (Arnz),

1, 1—165.

Helm C., Reuter M. & Schülke I. 2003: Die Korallenfauna des

Korallenooliths (Oxfordian, Oberjura, NW-Deutschland):
Zusammensetzung, Stratigraphie und regionale Verbreitung.
Paläont. Z. 77, 1, 77—94.

Jell J.S. 1969: Septal microstructure and classification of the Phil-

lipsastreidae. In: Campbell K.S. (Ed.): Stratigraphy and
Palaeontology.  Essays in Honour of Doroty Hill. Australian
National University Press, Canberra, 50—73.

Koby F. 1880—1889: Monographie des Polypiers jurassiques de la

Suisse. Part I—IX. Mém. Soc. Paléont. Suisse 7—16, 1—582.

Koby F. 1905: Sur les polypiers jurassiques des environs de St.-

Vallier-de-Thiey. Bull. Soc. Géol. France 4, 2, 847—863.

Kochanová M. 1978: Bivalvia and Gastropoda from the Vr-

šatec Castle klippe. Západ. Karpaty,  Sér. Paleont. 4, 7—56
(in Slovak).

Kolosvary G. 1964: Contribution 

à la connaissance de la faune de

coralliaires Méso- et Cénozoique de la Transylvanie. Magy.
Áll. Földt. Intéz. Évi Jelent. 2 (for 1961), 211—258 (in Hun-
garian with French abstract).

Kołodziej B. 2003: Scleractinian corals of suborders Pachythecali-

ina and Rhipidogyrina: discussion on similarities and descrip-
tion of species from Štramberk-type limestones, Polish Outer
Carpathians. Ann. Soc. Geol. Pol. 73, 3, 193—217.

Lauxmann U. 1991: Revision des Oberjurassischen Korallen von

Wűrtemberg (SW Deutschland), exclusive Fungiina. Palae-
ontographica  (A) 219, 107—175.


ère B. 1990: Periseris, scléractiniaire colonial jurassique.

Revision structurale et taxinomie de populations bajociennes
de l’est de la France. Géobios 23, 1, 33—55.


ère B. 2000: Coraux constructeurs du Bajocien inférieur

de France. Géobios  33, 2, 153—181.


ère B. & Gill G.A. 1998: Dendraraea corail scléractiniaire

branchu jurassique: structure, systématique, écologie. Palae-
ontographica  (A) 248, 145—163.

Lebanidze Z.M. 1991: Upper Jurassic corals from the western

Georgia. Trudy Geol. Inst. AN Gruzinskoy SSR 105, 1—64 (in
Russian, English summary).

Liao Weihua & Xia Jinbao 1994: Mesozoic and Cenozoic sclerac-

tinian corals from Tibet. Palaeont. Sin. 184, New Ser. B, 31,

Löser H. & Mori K. 2002: The Jurassic corals from Japan in the

Tohoku University Museum collection. Bull. Tohoku Univ.
Mus. 2, 77—110.

Michelin H. 1840—1847: Iconographie zoophytologique. Descrip-

tion par localités et terrains des polypiers fossiles de France
et pays environments, Paris (P. Bertrand), 1—348.

Milne Edwards H. & Haime J. 1850—1854: A monograph of the

British fossil Corals.


Palaeontogr. Soc.,


London, 1—322.

Milne Edwards H. 1857—1860: Histoire naturelle des Coralliaires ou

polyps proprement dits. Atlas,  Paris. Vol. I (1857): 1—326,
Vol. II (1857): 1—633, Vol. III (1860): 1—560.

Mirchink M. 1937: Corals from the Jurassic beds of the environs

of Koktebel in the Crimea. Bull. Soc. Nat. Moscou, Soc.
Geol. 15, 62—80 (in Russian, English summary).

Mišík M. 1979: Sedimentological and microfacial study in the Ju-

rassic of the Vršatec (castle) klippe (neptunic dykes, Oxford-
ian bioherm facies). Západ. Karpaty,  Sér. Geol. 5, 7—56 (in
Slovak, English summary).

Morycowa E. 1974: Hexacorallia d’un bloc exotique de calcaire


à Woźniki près Wadowice (Carpathes Polonaises

Occidentales). Acta Geol. Pol. 24, 3, 457—484.

Morycowa E. & Roniewicz E. 1990: Revision of the genus Clado-

phyllia and description of Apocladophyllia gen. n. (Clado-
phyllidae fam. n., Scleractinia). Acta Palaeont. Pol. 35, 3—4,

Morycowa E. & Roniewicz E. 1995a: Microstructural disparity

between Recent fungiine and Mesozoic microsolenine scler-
actinians.  Acta Palaeont. Pol. 40, 4, 361—385.

Morycowa E. & Roniewicz E. 1995b: Scleractinian septal micro-

structure. Taxonomical aspect. In: Lathuili

ère B.


& Geister J.

(Eds.): Coral Reefs in the past, present and future. Publ. Serv.
Geol.,  Luxembourg,  29, 269.

Orbigny A. (de) 1850: Prodrôme de Paléontologie stratigraphique

universelle des animaux mollusques et rayonnés. 


(V. Mason)

Paris 2, 1—428.

Pandey D.K. & Fürsich F.T. 1993: Contributions to the Jurassic of

Kachchh, Western India. I. The coral fauna. Beringeria 8, 3—69.

background image

432                                                                              MORYCOWA and MIŠÍK

Pandey D.K. & Fürsich F.T. 2001: Environmental distribution of

Scleractinia Corals in the Jurassic of Kachchh, Western India. J.
Geol. Soc. India 57, 479—495.

Pandey D.K. & Fürsich F.T. 2003: Jurassic corals of east-central Iran.

Beringeria 32, 3—138.

Roniewicz E. 1960: Complexastraea and Thecosmilia from the Astar-

tian of Poland. Acta Palaeont. Pol. 5, 4, 451—470 (in Polish,
English summary).

Roniewicz E. 1966: Les madréporaires du Jurassique supérieur de la

bordure des Monts de

Sainte-Croix,  Pologne. Acta Palae-

ont. Pol. 11, 2, 157—264.

Roniewicz E. 1976: Les scléractiniaires du Jurassique supérieur de la

Dobrogea centrale, Roumanie. Palaeont. Pol. 34, 17—121.

Roniewicz E. 1979: Jurassique scleractinian coral Thamnoseris Etallon,

1864 and its homeomorphs. Acta Palaeont. Pol. 24, 1, 51—64.

Roniewicz E. & Stolarski J. 2001: Triassic roots of the amphiastraeid

scleractinian corals. J. Palaeontology 75, 34—45.

Rosendahl S. 1985: Die oberjurassische Korallenfazies von Algarve

(Sűdportugal).  Arb. Inst. Geol. Paläont. Univ. Stuttgart,  N. F.
82, 1—125.

Siblík M. 1978: Brachiopods from the Vršatec Castle klippe near Ila-

va.  Západ. Karpaty, Sér. Paleont. 4, 7—56 (in Slovak).

Solomko E. 1888: Die Jura- und Kreidekorallen der Krim. Verh.

Russ. Kaiserl. Min. Gesel. St. Petersburg 2, 24, 67—231.

Speyer C. 1913: Die Korallen des Kelheimer Jura. Palaeontographi-

ca 59, 193—249.

Stolarski J. 2003: Three-dimensional micro- and nanostructural char-

acteristics of the scleractinian coral skeleton: A biocalcification
proxy.  Acta Palaeont. Pol. 48, 4, 497—530.

Turnšek D. 1972: Upper Jurassic corals of southern Slovenia.

Razprave  IV, 15, 6, 3—121 (in Slovenian, large English

Turnšek D. 1997: Mesozoic Corals of Slovenia. Založba ZRC, 16,


Wells J.W. 1956: Scleractinia. In: Moore R.C. (Ed.): Treatise Invert.

Paleont. Part F.  Geol. Society, University Kansas Press,
Lawrence,  328—444.

Zlatarski V. 1966: Enallhelia multiradiata SP. N., Madréporaire du

Crétacé inférieur de la Bulgarie. C. R. Acad. Bulg. Sci. 19, 2,