background image


Sponge assemblage from the Permian reefal limestones of

Kuh-e Bagh-e Vang, Shotori Mountains (eastern Iran)








Institute of Paleontology, University of Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany;


University of Esfahan, Faculty of Sciences, Esfahan, Iran;;

(Manuscript received March 1, 2005; accepted in revised form June 16, 2005)

Abstract: An association of sphinctozoid and inozoid sponges and the problematic organism Lercaritubus problematicus
are described from the Permian Jamal Formation exposed in Kuh-e Bagh-e Vang, south of the town of Shirgesht, in the
Shotori Mountains, eastern Iran. The sponge taxa described, are: “Sphinctozoida”:  Amblysiphonella rigbyi nov. sp.,
Baghevangia minima nov. gen., nov. sp., Shotorispongia permica nov. gen., nov. sp., Shotorispongia biserialis nov. sp.,
Thaumastocoelia? cf. Th. irregularis Weidlich & Senowbari-Daryan, Sollasia ostiolata Steinmann, Sollasia cylindrica nov.
sp.,  Girtyocoelia beedei (Girty), and Lemonea cylindrica (Girty); “Inozoida”:  Peronidella recta grossa Wu, Bicoelia
spinosa nov. sp., Heptatubispongia symmetrica Rigby & Senowbari-Daryan, Maeandrostia kansasensis Girty, Maeandrostia
radiata nov. sp., Solutossaspongia tabasensis nov. sp. Problematic organism: Lercaritubus problematicus Flügel, Senowbari-
Daryan & Di Stefano. The sponge fauna of the Permian Jamal Formation of Kuh-e Bagh-e Vang is represented by at least
7 sphinctozoan genera (2 new) and 9 species (3 new) and 5 inozoan genera with 6 species (3 new). Among the documented
genera Amblysiphonella rigbyi nov. sp. seems to be the most abundant species, followed by the inozoid species Maeandrostia
kansasensis Girty and Heptatubispongia symmetrica Rigby & Senowbari-Daryan. The sponge fauna of Kuh-e Bagh-e Vang
is similar to sponge faunas described by Senowbari-Daryan & Di Stefano (1988) from the Lower Permian reef boulders of
Sosio Valley, western Sicily, and from the Permian reefal limestones of Oman. The sponge-bearing reefal carbonates of
Kuh-e Bagh-e Vang can be classified as sponge-Tubiphytes-Archaeolithoporella-boundstones.

Key words: Permian, Iran, Shotori Mts,  sponges, sphinctozoans, inozoans, problematica.


Coralline sponges (“Sphinctozoida”, “Inozoida”, and
“Chaetetida”) are the most abundant reef builders in the late
Paleozoic and Triassic reefs of the world. Hexactinellida are
also known from Permian reefs of Texas (e.g. Finks 1960)
and Triassic reefs of China (e.g. Wu & Xiao 1989; Rigby et
al. 1999a; Wu 1990), the Pamir region (Boiko et al. 1991),
Iran (Senowbari-Daryan & Hamedani 1999), and the Alps
(Keupp et al. 1989), but their abundance and diversity is
much lower than the coralline representatives. The number
of coralline sponge taxa in some Permian reefs is very high,
and locally exceeds 50 species (e.g. in Djebel Tebaga, Tuni-
sia: Termier & Termier: in Termier et al. 1977; Senowbari-
Daryan & Rigby 1988; Rigby & Senowbari-Daryan 1996;
or in China: Deng 1981, 1982a,b; Rigby et al. 1989a,b,
1994; Fan & Zhang 1985; Fan et al. 1991, 2002; Zhang
1983; Wu 1991). The sponge fauna of the Permian Jamal
Formation in Kuh-e Bagh-e Vang is rich in individuals, but
has low diversity.

The foraminiferal assemblage of Kuh-e Bagh-Vang was

described by Leven & Vaziri Moghaddam (2004). Accord-
ing to these authors the age of the sponge-bearing beds of
the Jamal Formation in Kuh-e Bagh-e Vang is dated as Early
Permian (Bolorian = Kungurian).

Sponges from the Permian Jamal Formation of Iran have

not been previously described in detail. Amblysiphonella
iranica was reported from the Permian deposits outcrop-
ping near Mount La Kaftari, north of Esfahan, by Senow-

bari-Daryan & Hamedani (2002), and the new wewokellid
sponges  Iranospongia circulara and Regispongia fluegeli
by Rigby, Senowbari-Daryan & Hamedani. (2005) from the
same locality.

The following sponge taxa from the Permian of Kuh-e

Bagh-e Vang (Shotori Mts) are described in this paper:

– “Sphinctozoida”:  Amblysiphonella rigbyi nov. sp.,

Baghevangia minima nov. gen., nov. sp., Girtyocoelia bee-
dei  (Girty) 1908a, Lemonea cylindrica (Girty) 1908b, Sho-
torispongia permica nov. gen., nov. sp., Shotorispongia
biserialis nov. sp., Sollasia ostiolata Steinmann, 1882, Sol-
lasia cylindrica nov. sp., Thamastocoelia? cf. Th. irregu-
laris Weidlich & Senowbari-Daryan, 1996.

– “Inozoida”:  Bicoelia spinosa nov. sp., Heptatubi-

spongia symmetrica Rigby & Senowbari-Daryan, 1996,
Maeandrostia kansasensis Girty, 1908a, Maeandrostia ra-
diata nov. sp., Slutossaspongia tebagensis nov. sp.

– Problematic organism (sponge?):  Lercaritubus prob-

lematicus Flügel, Senowbari-Daryan & Di Stefano, 1990.

The investigated material is deposited in collections at

the Institute of Paleontology, University of Erlangen-Nürn-
berg, Germany (“material Senowbari-Daryan: Perm Iran,
Bagh-e Vang”).


The Permian deposits in Iran, defined as the Jamal For-

mation, outcrop in several localities in the Shotori Mts in

background image

382                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

eastern and also in central Iran. The type locality of the

Jamal Formation is in Kuh-e Jamal (33°21‘N, 57°19‘ E) in
the southern neighbouring area of Kuh-e Shotori (Stöck-
lin et al. 1965). Here the Jamal Formation has a total
thickness of 473 m.

A section of the Permian Jamal Formation crops out on the

western flank of the Kuh-e Bagh-e Vang (33°58‘60‘‘ N,
56°47‘66‘‘ E, Fig. 1), and is located about 65 km NW of
Tabas (Fig. 1), approximately 5 km south of the town of
Shirgesht (geol. map Shirgesht 1:100,000 by Ruttner et
al. 1968). Here the section reaches a thickness of 293 m
(Ruttner et al. 1968) to 300 m (Leven & Vaziri Moghad-
dam 2004). The Permian deposits of the Jamal Formation
are underlain by the sandy and shaly Carboniferous Sardar
Formation, and are overlain by the Lower Triassic Sorkhe
Shale Formation (Fig. 2). The boundary of Carboniferous
to Permian is placed at a hiatus, where sedimentation was
interrupted (Fig. 3).

Generally the Jamal Formation is composed of dolo-

mites, thin to medium bedded, massive, and different co-
loured limestones and marls with some olistoliths (up to
3 m in diameter) in the lower part. Partoazar (1995) de-
fined the 60 m basal part of the Jamal Formation as an in-
dependent formation named the Bagh-e Vang Formation
as Asselian—Sakmarian in age. This term was used as the
Bagh-e Vang Member by Leven & Vaziri Maghaddam
(2004), who differentiated 10 units within the Jamal For-

Fig. 1. Geographical position of Kuh-e Bagh-e Vang south of the
town of Shirgesht (after Leven & Vaziri Moghaddam 2004).

mation (Fig. 2). According to foraminiferal stratigra-
phy of Kahler (1974) and Leven & Vaziri Moghaddam
(2004), the Bagh-e Vang Member (the basal part 60 m)
of the Jamal Formation in Kuh-e Bagh-e Vang is Bolo-
rian (Kungurian), the middle part (150 m) is Kubergan-
dian—Murgabian (Roadian—Wordian), and the upper part
(90 m) is Midian—Dorashamian (Capitanian—Changhis-
ingian) in age. The described sponges are from the
lower part of the section, which is of Bolorian (Kun-
gurian) age (Fig. 3).

Ruttner et al. (1968) and Leven & Vaziri Moghaddam

(2004) mentioned the occurrence of different micro-
and macrofossil groups, including fusulinids, corals,
cephalopods, gastropods, crinoids, and brachiopods,
but reported nothing about the occurrence of sponges.
The sponges, described here, were collected mostly in
boulders derived from the lower and middle parts of the
Jamal Formation.

Fig. 2. Section of Kuh-e Bagh-e Vang. The dots indicate the
sponge-bearing carbonate beds in the section (modified after Leven
& Vaziri Moghaddam 2004).

background image


Fig. 3. View to the west flank of the Kuh-e Bagh-e Vang. The sponge-bearing reefal carbonate beds crop out in the middle part, where
most sponge specimens were collected (arrow). C – Carboniferous, B – Bolorian, K – Kubergandian.

D i f f e r e n t i a l   d i a g n o s i s :  See after the species de-


M a t e r i a l :   Numerous specimens in thin sections 1/3/1,

1/3/2 (holotype), 1/7, and 3/1.

D e s c r i p t i o n :  The catenulate stems of this species of

Amblysiphonella have a length of up to 50 mm, usually
with a diameter of 4—6 mm, maximum of 8 mm. Usually nu-
merous specimens occur together. Outer segmentation of
the sponge, corresponding to the internal segmentation, is
weakly annulate or, in some specimens, almost not recog-
nizable. An axial retrosiphonate spongocoel with a diame-
ter of about 2 mm (1—3 mm) passes through the complete
length of the sponge. The barrel-shaped (in longitudinal
sections more quadrangular) ring-chambers have heights of
up to 3.5 mm (2—3.5 mm). Chamber walls are about 0.3 mm
thick, but they are usually recrystallized and thickened,
measuring up to 0.9 mm thick. The exo- (outer), inter- (wall
between two chambers) and endowalls (wall of spongocoel)
are pierced by coarse pores of 0.2—0.3 mm in diameter
(Fig. 4.3,4). Vesiculae or other types of filling structures are
lacking within the chamber interiors. However, some vesic-
ulae-like structure occurs within the spongocoel of the ho-
lotype connecting both sides of the endowalls.

R e m a r k s :   Amblysiphonella is a long-lasting sponge ge-

nus known from the Cambrian—Ordovician (to date Ambly-
siphonella has not been reported from the Silurian or
Devonian) and from the Carboniferous to the Triassic (Senow-
bari-Daryan & García-Bellido 2002). Approximately 60 spe-
cies are known from Paleozoic and Triassic deposits. All
species known up to 1990 are listed with diagnostic features
by Senowbari-Daryan (1990: p. 62) and those known up to
2000 by Senowbari-Daryan & García-Bellido (2002).

The genus Amblysiphonella, as A. iranica Senowbari-

Daryan & Hamedani, 2002, was reported recently for the
first time from Permian deposits of Iran. It came from the
Lower Permian of Kuh-e La Kaftari, SE of Bahgerabad (NE of
Esfahan). In comparison the stem diameter of A. iranica, at

Systematic Paleontology

Phyllum:  Porifera Grant, 1836

Class:  Demospongea Sollas, 1875

Superclass:  Ceractinomorpha Lévi, 1973

Order:  Permosphincta Termier & Termier, 1974

Suborder:  Porata  Seilacher, 1962

Family:  Sebargasiidae Laubenfels, 1955

Subfamily:  Sebargasiinae Senowbari-Daryan, 1990

Genus:  Amblysiphonella Steinmann, 1882

D i a g n o s i s :  See Senowbari-Daryan & Rigby (1988:

p. 179).

T y p e   s p e c i e s :   Amblysiphonella barroisi Steinmann,


Amblysiphonella  rigbyi nov. sp.

(Fig. 4.1—5)

D e r i v a t i o   n o m i n i s :  This species is dedicated to Prof.

Dr. J.K. Rigby (Provo, Utah) for his contributions to sponge
paleontology and especially for coordinating preparation
of the revised volumes on Porifera of “Treatise on Inverte-
brate Paleontology, Part E, Vols. 2 and 3”.

H o l o t y p e :  The holotype is designated as the specimen

in Fig. 4.4/H.

P a r a t y p e s :  All specimens illustrated in Fig. 4.1—3,5.
L o c u s   t y p i c u s :  Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :  Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :  Small specimen of Amblysiphonella with

weakly defined outer but clear internal segmentation.
The thick outer-, inter- and endowalls are coarsely perfo-
rated. The barrel-like ring-chambers are relatively high
and lack vesiculae or other internal structures within the
chamber interiors.

background image

384                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 4.  Amblysiphonella rigbyi nov. sp. and Sollasia cylindrica nov. sp. from the Permian reefal limestones of Jamal Formation of Kuh-e
Bagh-e Vang, Shotori Mountains. 1—5 – Amblysiphonella rigbyi nov. sp. 1 – Different sections through numerous specimens, which
grow together. 1/3/2. 2 – Marginal axial section through a specimen exhibits the axial canal and perforation of the endowall. 7/1. 3 – Dif-
ferent sections through several specimens. Arrows indicate the coarse perforation of the chamber wall in a specimen. 1/3/2. 4 – Section
through two specimens. H – Holotype. The perforation of endowall is clearly shown. 1/3/1. 5 – Sections through numerous specimens
that grew together. 3/1. 6 – Sollasia cylindrica nov. sp. Longitudinal section through a cylindrical stem exhibiting thick chamber walls
and the large opening between two chambers 

7/2a.  Scale bars = 4 mm.

background image


15—27 mm, is much bigger than that of A. rigbyi (maximum
of 8 mm). Other diagnostic features of the two Iranian spe-
cies are also different, making a detailed comparison of
these species unnecessary.

According to the sponge diameter and other diagnostic

features (see Senowbari-Daryan 1990: p. 62) other species
of  Amblysiphonella are larger than A. rigbyi, except the fol-
lowing ones that may be compared with the new species
from Iran:

– A. yoshinoi, described from the Permian of Japan by

Akagi (1958), differs from A. rigbyi in having a large di-
ameter (12.5 mm), thickness of the wall (0.1 mm exowall,
endowall: 0.02 mm), and by much smaller pores in the ex-
owall (0.06—0.1 mm) and endowall (0.02 mm).

– A. planorbis from the Permian of Japan, described by

Hayasaka (1918), with a diameter of 11 mm is larger than
the new species. Also, the diameter of the pores (less than
0.2 mm) in A. planorbis is much smaller than pores in A. rigbyi.

– A. benschae Zhuravleva (in Boiko et al. 1991), de-

scribed from the Upper Carboniferous and Lower Permian of
the Pamir Mts, is differentiated from A. rigbyi by large di-
mensions, well defined outer segmentation and by fine and
dichotomously branched pores of the segment walls. This is
also true of A. eleganta Belyaeva (in Boiko et al. 1991).

The sponge diameter (4 mm) of A. tenuiramosa, described

by Boiko (in Boiko et al. 1991) from the Upper Permian of
Primorie, corresponds to that in A. rigbyi, but it differs in the
shape and the height of the chambers.

The dimensions of A. rigbyi are close to the Carboniferous

species A. carbonara (Steinmann), but the later has smaller
pores of endowalls (see García-Bellido et al. 2004). In addi-
tion,  A. carbonara is limited to the Carboniferous and does
not occur in Permian deposits. No other species of Amblysi-
phonella are comparable with the new species from the Per-
mian of Kuh-e Bagh-e Vang.

O c c u r r e n c e :  Presently only known from the Permian

of Kuh-e Bagh-e Vang, Shotori Mts, Iran.

?Family:  Phragmocoeliidae  Ott, 1974

Genus:  Baghevangia nov. gen.

D e r i v a t i o   n o m i n i s :  Named after Kuh-e Bagh-e Vang

(Mount Bagh-e Vang), where the sponge was found.

D i a g n o s i s :  Perforate, moniliform, weakly segmented,

unbranched and small sponge of 2 mm in diameter with a
wide axial spongocoel of prosiphonate(?) type. Filling skel-
eton of reticular to septate type resemble some archaeo-
cyathid constructions. Microstructure of skeleton and
spicules are not known.

T y p e   s p e c i e s :  Baghevangia minima nov. sp.
D i s c u s s i o n :  The thalamid sponge family Phragmo-

coeliidae Ott (1974) is characterized by septate filling struc-
tures within the chambers. Two other genera with such
filling skeletons are known: Phragmocoelia Ott (1974)
from the Upper Triassic (Carnian) of the Alps, and Radio-
thalamos Pickett & Rigby (1983) from the Devonian of
New South Wales (Australia). The filling skeleton of Baghe-
vangia is arranged more radially in cross sections but in lon-
gitudinal section it appears more reticular, separating this

genus from both of the mentioned genera. Therefore, the at-
tribution of the new genus to the family Phragmocoliidae is

Baghevangia minima nov. sp.

(Fig. 5.1—10, Fig. 6)

D e r i v a t i o   n o m i n i s :  Named for the small dimensions

of the sponge.

H o l o t y p e :  Specimen cut in longitudinal section is il-

lustrated in Fig. 5.1/H (thin section 8/4/1).

P a r a t y p e s :  All specimens figured in Fig. 5.1/P,2—10.
L o c u s   t y p i c u s :  Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :  Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :  See diagnosis of the genus.
M a t e r i a l :  Numerous specimens in thin sections 3/2/1,

3/2/2, 4/1, 8/3, 8/4/1 (holotype), 12/2, 13/7, and 13/9.

D e s c r i p t i o n :  Numerous specimens are cut in trans-

verse sections but only a few in longitudinal sections. The
moniliform and unbranched stems of this species have
spherical chambers and reach a height of up to 10 mm, with
maximum diameters of 2.5 mm. Outer segmentation is more
or less well developed but corresponding internal segmen-
tation is weakly developed. An axial spongocoel, up to
1.1 mm in diameter (almost 50 % of the sponge diameter),
extends through the whole sponge. Some paratypes
(Fig. 5.2—3) suggest a possible prosiphonate type spongo-
coel, but this could not be definitely shown. The exowall of
the sponge is characterized by a dermal layer that is pierced
by numerous small pores 0.1 mm in diameter. The endowall
(spongocoel wall) is usually thicker than the exowall. A re-
ticular? to septate (radially arranged) fibrous skeleton fills
the space between both walls. The spaces between the fibre
are mostly circular and resemble some archaeocyathid con-
structions. Because of strong recrystallization, the primary
mineralogy, microstructure of the fibrous skeleton and spi-
cules are not known.

The holotype (Fig. 5.1/H) is a specimen with at least 4 seg-

ments cut in axial oblique section and exhibits almost all
characteristics of the sponge.

O c c u r r e n c e :  Known up to now only from the Permian

of Kuh-e Bagh-e Vang, Shotori Mts, Iran.

Family:  Colospongiidae Senowbari-Daryan, 1990

Synonymy:  Colospongiidae Boiko & Belyaeva (in Boiko

et al. 1991)

Parauvanellidae  Wu, 1991

Imbricatocoeliidae Wu, 1991

Subfamily:  Corymbospongiinae  Senowbari-Daryan, 1990

Genus:  Shotorispongia nov. gen.

D e r i v a t i o   n o m i n i s :  Named after the Shotori Moun-

tains where this sponge was collected.

D i a g n o s i s :  Upright cylindrical sponge with glomerate

arrangement of the chambers and lacking a spongocoel, ve-
siculae and filling structures. Chamber walls perforated.

T y p e   s p e c i e s :   Shotorispongia permica nov. sp.

background image

386                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 5. 1—10 – Baghevangia minima nov. gen., nov. sp. from the Permian reefal limestones of Jamal Formation of Kuh-e Bagh-e Vang, Sho-
tori Mountains. 1 – Several transverse and longitudinal sections. The holotype (H) is cut in oblique axial section, and exhibits four segments
(compare Fig. 6). 8/4/1. 2 – The axial section of a specimen shows the spongocoel and weak segmentation of the sponge. At the upper end
some unknown tubular organisms appear within the spongocoel. 8/3. 3 – The longitudinal section exhibits the possible prosiphonate type of
spongocoel. 8/4/1. 4 – The oblique section shows the radially arranged filling skeleton and the thickened endowall of the spongocoel. 13/9.
5 – The cross section exhibits the wide spongocoel and the radially arranged filling skeleton between the exo- and endowalls. 4/1. 6 – Similar
to fig. 5, but the thickened endowall makes the spongocoel appear to be double. 8/4/1.  7 – Oblique cross section exhibiting the axial canal
and the filling skeleton around the spongocoel. 12/2. 8 – The section through three chambers shows the wide axial canal and the loose fibrous
structure between the exo- and endowall. 13/7. 9 – The longitudinal section through a recrystallized specimen shows outer annulation of the
sponge corresponding to internal segmentation. 3/2/1. 10 – Longitudinal section shows the outer annulation and weakly developed internal
segmentaion. 3/2/2.  Scale bars = 1 mm.

background image


D i s c u s s i o n :  Two subfamilies were attributed to the Fam-

ily Colospongiidae by Senowbari-Daryan (1990: pp. 63—64):
the Colospongiinae, with moniliform chamber arrangement,
and the Corymbospongiinae, with glomerate or stratiform
chamber arrangement. Because of its glomerate chamber ar-
rangement  Shotorispongia should be assigned to the
Corymbospongiinae, which also includes the genera:
Corymbospongia Rigby & Potter (1986), Parauvanella Se-
nowbari-Daryan & Di Stefano (1988), Neoguadalupia
Zhang (1987), Platythalamiella Senowbari-Daryan & Rig-
by (1988), and possibly Imbricatocoelia Rigby, Fan &
Zhang (1989a). Later, Rigby et al. (1998b) added the genus
Exaulipora to this subfamily. Both Corymbospongia and
Exaulipora differ from Shotorispongia by having “adnate
or glomerated, occasionally moniliform, chambers sub-
spherical to egg-shaped” (Rigby & Potter 1986: p. 28) and
by having exaules, which are lacking in Shotorispongia.
Neoguadalupia and Imbricatocoelia differ from Shotori-
spongia by their sheet-like shapes and by the arrangement
of their chambers above and beside one another in one layer.
Platythalamiella has the same chamber arrangement as
Shotorispongia but differs from it in having a sheet-like
shape. Sections perpendicular to the plates of Platythalamiella
might be confused with longitudinal sections of Shotori-
spongia (Fig. 7). The chamber arrangement of Shotorispongia
is similar to Cystothalamia Girty, but Cystothalamia differs
from  Shotorispongia by having an axial spongocoel.

Shotorispongia permica nov. sp.

(Fig. 7, Fig. 8.1)

D e r i v a t i o   n o m i n i s :  Named for the Permian occur-

rence of the sponge.

H o l o t y p e :  Fig. 8.1/H (thin section 20).
P a r a t y p e :  Fig. 8.1/P.
L o c u s   t y p i c u s :  Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :  Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :  Upright cylindrical sponge with glomerate

arrangement of the crescentic chambers. Several chambers
(at least 4) occur in each growth level. Chamber wall (as
compared to S. biserialis) coarsely perforated. Lacks vesicu-
lae and filling structures.

M a t e r i a l :  Two specimens illustrated in Fig. 8.1.
D e s c r i p t i o n :  Two specimens of this species are

available, and they grow together, or one colonized the
other. Both are upright specimens composed of crescen-
tic glomerate chambers. The sponges are up at least
30 mm tall and have diameters of approximately 10 mm.
The holotype (Fig. 8.1/H) is 21 mm tall and has a diame-
ter of 10 mm. It is overgrown by a brachiopod.

Longitudinal sections of both specimens exhibit in each

stage or growth level, three or four chambers arranged be-
side one another. The chamber heights range between
1.2 mm and 2.5 mm, with maximum widths of 5.5 mm.
Chamber walls are relatively thin (0.2—0.6 mm) and pierced
by unevenly destributed pores that are 0.1—0.2 mm in di-
ameter. Chambers in the axial region are cut marginally and
appear small. Long axes of chambers in the peripheral part
are oriented oblique or almost parallel to the axis of the

Fig. 6.


Baghevangia minima nov. gen., nov. sp., holotype (com-

pare with Fig. 5.1/H). The drawing from the thin section shows the
four chambers and the wall with radially reticular fibrous skeleton.
Thin section 8/4/1, scale 2 mm.

Fig. 7. Reconstruction of Shotorispongia  permica nov. sp. The
vertical section shows the crescentic chambers arranged one be-
side and above the others. Schematic, not to scale.

background image

388                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

sponge. Spongocoel, vesiculae and filling structures are
lacking. Fig. 7 shows a reconstruction of S. permica.

O c c u r r e n c e :  Known to date only from the Permian of

Kuh-e Bagh-e Vang, Shotori Mts, Iran.

Shotorispongia biserialis nov. sp.

(Fig. 8.2)

D e r i v a t i o   n o m i n i s :  Named because only two cham-

bers occur in each growth stage or level.

H o l o t y p e :   Fig. 8.2 (thin section 15).
L o c u s   t y p i c u s :  Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :  Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :  Upright cylindrical sponge with glomerate

arrangement of hemispherical chambers. In each growth level
fewer chambers (in longitudinal section two, in whole sponge
maybe four) than in the preceeding species. Chamber walls
relatively thick and finely perforated (as compared to S. per-
mica). Spongocoel, vesiculae and filling structures lacking.

M a t e r i a l :  One specimen.
D e s c r i p t i o n :  Because only one specimen is known, de-

scriptions of the holotype and species are identical. The
sponge has a height of approximately 30 mm, with a diameter
of about 10 mm. It is composed of numerous hemispherical
chambers that are biserially arranged in each growth level or
stage, as seen in longitudinal section, but may occur with four
chambers, as seen in cross section. Heights of chambers range
between 2.5 mm and 4 mm with width of 4.5—9.0 mm. Cham-
ber walls are 0.4—1.0 mm thick and pierced by evenly distrib-
uted single pores that are 0.1—0.2 mm in diameter. Vesiculae
and other filling structures are lacking.

R e m a r k s :   Shotorispongia biserialis differs from the

type species, S. permica, in the shape and size of the cham-
bers, the even distribution of perforations of the chamber
walls, and especially, in the fewer number of chambers in
each growth stage.

O c c u r r e n c e :  Known to date only from the Permian of

Kuh-e Bagh-e Vang, Shotori Mts, Iran.

Suborder:  Aporata Seilacher, 1962

Family:  Thaumastocoeliidae Ott, 1967

Subfamily:  Thaumastocoeliinae Senowbari-Daryan, 1990

Genus:  Thaumastocoelia Steinmann, 1882

Thaumastocoelia? cf. T.  irregularis Weidlich & Senow-

bari-Daryan, 1996

(Fig. 8.5)

M a t e r i a l :   Four specimens in thin section 16.

D e s c r i p t i o n :  This irregularly bent sponge is composed

of low chambers one above the others in moniliform arrange-
ment. Outer segmentation is poorly developed. The sponge
reaches a height of more than 20 mm, with a diameter of up to
5 mm that corresponds to the diameter of the chambers.
Height of irregular chambers ranges between 0.7 mm and
2 mm. Thickness of chamber walls varies in the same chamber
and in the whole sponge between 0.1 and 1 mm. Chamber
walls are pierced by ostia with diameters of 0.2—0.4 mm. The
chamber roofs are pierced by a large opening, but in one spec-
imen several openings were observed in one roof (Fig. 8.5:
arrow). The rigid skeleton is totally recrystallized and, there-
fore, the typically spherulitic microstructure of the family
Thaumastocoeliidae cannot be confirmed.

R e m a r k s :  The irregular shape of the sponge, its poorly

defined outer segmentation, chamber shape and arrange-
ment, and the variable thickness of chamber walls of this
species correspond to the species described as Thamasto-
coelia?  irregularis by Weidlich & Senowbari-Daryan
(1996) from the Upper Permian Ba’id Formation of Oman.
However, the chamber interwalls are pierced by several
openings in that species and such openings were observed
in only one specimen from Kuh-e Bagh-e Vang. Therefore,
the exact affiliation of the Iranian sponge is uncertain.

Genus:  Sollasia Steinmann, 1882

D i a g n o s i s :  See Senowbari-Daryan & Rigby (1988:

p. 197).

T y p e   s p e c i e s :   Sollasia ostiolata  ostiolata Stein-

mann, 1882.

O t h e r   s p e c i e s :   S. abista Rigby, Fan & Zhang, 1989a,

S. arta Belyaeva, 1991 (in Boiko et al. 1991), S.?  amaurosa
Senowbari-Daryan & Rigby, 1988, S.?  baloghi Kovács,
1978,  S. ostiolata permica Parona, 1933, S. ramosa Rigby
& Mundy, 2000, S. spheroida Rigby, Fan & Zhang, 1989a.

Sollasia ostiolata Steinmann, 1882

(Fig. 8.6, Fig. 9.1—2,7, Fig. 14.7)

1882  Sollasia  ostiolata nov. sp. – Steinmann, p. 151—152, Pl. 7, Fig. 3
1990  Sollasia ostiolata Steinmann – Senowbari-Daryan, p. 128—129,

Pl. 43, Fig. 7, Pl. 45, Figs. 4, 8, Pl. 56, Fig. 9, Text-fig. 47

1991  Sollasia ostiolata Steinmann – Belyaeva (in Boiko et al.),

p. 63, Pl. 7, Figs. 2—4, Pl. 8, Figs. 1—5, Pl. 9, Figs. 1—3

1994  Sollasia ostiolata Steinmann – Rigby et al., p. 92, Pl. 11,

Fig. 1, Pl. 12, Fig. 1 (non Pl. 8, Fig. 1!)

1995  Sollasia ostiolata Steinmann – Rigby et al., p. 243—244,

Figs. 8.6—8.13, 9.5, 9.6, 10.1, 10.2, 10.7

1998b  Sollasia ostiolata Steinmann – Rigby et al., p. 54—55, Pl. 1,

Fig. 1, Pl. 4, Figs. 11—14, Pl. 5, Figs. 1—2, Pl. 7, Fig. 1, Text-fig. 13

Fig. 8.  Shotorispongia permica nov. gen., nov. sp., Shotorispongia biserialis nov. sp., Lemonea cylindrica (Girty), Sollasia ostiolata Stein-
mann, Thaumastocoelia? cf. irregularis Weidlich et Senowbari-Daryan, and Peronidella recta grossa Wu from the Permian reefal limestones
of the Jamal Formation of Kuh-e Bagh-e Vang, Shotori Mountains.  1 – Shotorispongia permica nov. gen., nov. sp. Longitudinal section
through the holotype (H) and a paratype (P) that grew on the holotype. Each growth stage has three to five crescent-like chambers with glom-
erate arrangement. Chamber walls are pierced by relatively large and unevenly distributed pores. 20. 2 – Shotorispongia biserialis nov. sp.
Longitudinal section through several glomerately arranged chambers with fine and evenly distributed pores in the chamber walls. 19.
3 – Lemonea cylindrica (Girty). The longitudinal section shows the tube-like chambers arranged radially around the axial spongocoel. 15.

background image


Fig. 8. (Caption continued)       4 – The sponges Peronidella recta grossa (P) and Heptatubispongia symmetrica (H) are encrusted and bound
by Archaeolithoporella sp. The remaining cavities are filled by silty sediment with small component particles. 6/2. 5 – Thaumastocoelia? ir-
regularis. Longitudinal sections through several specimens show the low chambers with thick walls and large openings in exo- and interwalls.
The arrow points to a specimen with chamber roofs perforated by several openings. 16, 

×2.3. 6 – Sollasia ostiolata Steinmann. Longitudinal

section through several spherical  chambers. Chamber interiors contain vesiculae and are filled with sparry calcite cement or partially with
sediment. 21. 7 – Abundant lumpy aggregates within the investigated limestones show combinations of tube-like and dark micritic crusts
without structure. 1/6. 8 – Incrustation of organisms (upper part of photograph) by Archaeolithoporella sp. The primary cavity (lower part
of photograph) is filled with silty sediment and small fragments. 10/3.  Scale bars: for Figs. 1, 2, 3, 5, 6 = 2 mm; for Figs. 4, 7, 8 = 1 mm.

background image

390                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

2003  Sollasia  ostiolata Steinmann – Noé, Pl. 12, Fig. 3, Pl. 33, Fig. 7
2004  Sollasia ostiolata Steinmann – García-Bellido, Senowbari-

Daryan & Rigby, p. 1054, Fig. 15/1—8 (synonymy)

M a t e r i a l :

 Several specimens in thin sections 1/1, 10/4a.

D e s c r i p t i o n :

 The moniliform stems of this sponge

reach heights of more than 40 mm. The chambers have di-
ameters of approximately 5 mm (rarely more) and heights
of up to 8 mm. A spongocoel is not defined by endowalls.
Chamber interwalls are pierced by a large opening (cryp-
tosiphonate, Fig. 8.6), and exowalls by small openings
(ostia, Fig. 9.1) with diameters of approximately 0.5 mm.
Exowalls of the chambers reach thicknesses of 0.5 mm. In-
terwalls (the wall between two chambers) are double-lay-
ered, reaching thicknesses of up to 1 mm. The fibrous
skeleton is composed of spherulites that are 0.05—0.08 mm in
diameter (Fig. 9.7). Vesiculae occur within chamber interiors.

O c c u r r e n c e :

  Sollasia ostiolata Steinmann is a com-

mon cosmopolitan sponge known from numerous Car-
boniferous and Permian localities on the world (see
Senowbari-Daryan & García-Bellido 2002). The sponge is
reported here for the first time from Iran.

Sollasia cylindrica nov. sp.

(Fig. 4.6, Fig. 9.2/S,3/S,4—6,8, Fig. 13.1/S,3)

D e r i v a t i o

  n o m i n i s :  Named for the cylindrical shape

and weak outer annulation of the sponge.

H o l o t y p e :

 Longitudinal section illustrated in Fig. 9.4/H

(thin section 4/3).

P a r a t y p e s :  

All specimens figured in Fig. 4.6,

Figs. 9.2/S,3/S,4/P,5—6,8, Fig. 13.1/S,3.

L o c u s   t y p i c u s :

 Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :

 Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :  

A small species of the genus Sollasia with

almost cylindrical or weakly annulated outer morphology,
but with clear internal segmentation. Individual segments
are usually higher than the diameter of the sponge. Exow-
alls contain rimmed ostia. Interwalls (wall between the
segments) with a large opening (cryptosiphonate). Skele-
tal mineralogy was aragonite, microstructure spherulitic.

M a t e r i a l :

 Several specimens in thin sections 4/3 (ho-

lotype), 6/2, 10/3, 11/4.

D e s c r i p t i o n :

 The cylindrical stems of this species are

slender, reaching maximum diameters of 3 mm (2—3 mm).
The most characteristic features of this species are the
weak annulations in the outer wall but with clear internal
segmentation. Individual segments are usually higher
(up to 4 mm) than the diameter of the stems. Roofs or in-
terwalls of segments are pierced by a central opening up
to 0.3 mm in diameter. Outer walls have a thickness of
0.2—0.3 mm, with interwalls up to 0.5 mm thick. The ex-
owall is pierced by ostia reaching diameters of approxi-
mately  0.2 mm.

The holotype (Fig. 9.4/H) is a specimen cut in longitudi-

nal section, having a height of 25 mm and a diameter of
3 mm. It is a cylindrical stem almost without outer annula-
tion and has lipped ostia in at least three chambers.

R e m a r k s :

  Sollasia cylindrica nov. sp. differs from the

type species S. ostiolata and other species of the genus (see
above) by its cylindrical morphology, weak segmentation,
and small diameter of sponge compared with S. ostiolata,
2—15 mm according to Senowbari-Daryan & Rigby (1988),
while  S. cylindrica is only 2—3 mm, and by its barrel- to
pear-shaped segments.

O c c u r r e n c e :

 Known to date from the Permian of Kuh-e

Bagh-e Vang, Shotori Mts, Iran.

Subfamily:  Enoplocoeliinae Senowbari-Daryan, 1990

Genus:  Girtyocoelia Cossman, 1909

(pro  Heterocoelia Girty, 1908a)

Genus:  Girtyocoelia beedei (Girty) 1908a

(Fig. 14.6/G, Fig. 15.6)

1908a  Heterocoelia beedei new species – Girty, p. 284, Pl. 14,

Figs. 1—8

1990  Girtyocoelia  beedei (Girty) – Senowbari-Daryan, p. 130, Pl. 45,

Figs. 1—3, 5—7, Text-fig. 48 (synonymy)

1998b Girtyocoelia beedei (Girty) – Rigby et al., p. 56—57, Pl. 3,

Fig. 3, Pl. 4, Figs. 6—10, Text-fig. 14

2000  Girtyocoelia beedei (Girty) – Rigby & Mapes, p. 38—39, Pl. 2,

Figs. 9—11

2003  Girtyocoelia beedei (Girty) – Noé, Pl. 12, Fig. 4

M a t e r i a l :

 Three specimens in thin sections 1/4, and 2/3.

D e s c r i p t i o n :

  G. beedei is a rare sponge species in the

investigated Iranian material. Only three specimens were
found, and all of them are small. One specimen, illustrated
in Fig. 14.6, is composed of four chambers, and is 23 mm
tall, with a diameter of only 4 mm. Maximum height of
chambers is 4 mm with an exowall of 0.5 mm thickness.
Endowalls have thicknesses of 0.15 mm, and are much
thinner than the exowalls. The interwalls are double. Ostia
in the exowall are lipped. Microstructure of the skeleton is

O c c u r r e n c e :

 Like Sollasia ostiolata Steinmann, Gir-

tyocoelia beedei (Girty) is an abundant cosmopolitan
sponge species, occurring in several Carboniferous and Per-
mian localities in the world (see Senowbari-Daryan &
García-Bellido 2002). This sponge is reported here for the
first time from Iran.

Family:  Guadalupiidae  Girty, 1908b

Genus:  Lemonea Senowbari-Daryan, 1990

D i a g n o s i s :

 “Porate, zylindrische oder konische

Schwämme mit einem oder mehreren durch den Schwamm
in seiner Länge durchziehenden Spongocoel(s), um
welche die röhrenförmigen Segmente radial angeordnet
sind. Astrorhizen-Systeme fehlen. Vesiculae können
auftreten, sind jedoch nicht häufig. Solitär oder kolonie-
bildend” (“Porate, cylindrical or conical sponges with one
or several spongocoel(s) passing through the sponge.
Tube-like chambers are arranged around the spongo-
coels(s). Astrorhizal systems lack. Vesiculae may occur,
but not abundant. Solitary colonial.”) (Senowbari-Daryan
1990: p. 151).

T y p e   s p e c i e s :  Guadalupia cylindrica

 Girty, 1908b.

background image


Fig. 9. Sollasia ostiolata Steinmann, Sollasia cylindrica nov. sp. and Bicoelia spinosa nov. sp. from the Permian reefal limestones of the Jamal
Formation of Kuh-e Bagh-e Vang, Shotori Mountains. 1—2, 7 – Sollasia ostiolata Steinmann. 1 – Longitudinal section through a stem with
spherical chambers. Chamber interiors contain some vesicular structures. Arrow points to rimmed ostium. 1/1. 2 – Section through two (or
one curved?) specimens that exhibit the same characteristics as specimen shown in fig. 1. Arrow points to an ostium. Sollasia cylindrica nov.
sp.  (S). 1/1. 7 – The section through two chambers shows the spherulites of the rigid skeleton. 10/4a. 3—6, 8 – Sollasia cylindrica nov. sp.
3 – Longitudinal section through a specimen of Sollasia cylindrica nov. sp. (S) and cross section through a specimen of Bicoelia spinosa nov.
sp. (T). Bicoelia clearly exhibits the two spongocoels (one filled with sediment, the other with cement) with separate walls and the exowall with
a spine-like structure at the outer surface. Arrow points to a rimmed ostium. 12/4. 4 – Longitudinal sections through two specimens of Sollasia
cylindrica, holotype (H). Both specimens show the weakly annulated outer morphology and the clear internal segmentation. Arrows point to
the rimmed ostia. 4/3. 5 – Longitudinal to oblique section. Arrow points to a rimmed ostium. 6/2. 6 – Oblique and cross sections through
three specimens of S. cylindrica nov. sp. Arrow points to a rimmed ostum. 6/2. 8 – Longitudinal section. 4/3.  Scale bars = 2 mm.

background image

392                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Lemonea cylindrica (Girty, 1908b)

(Fig. 8.3)

1908b  Guadalupia cylindrica n. sp. – Girty, p. 81, Pl. 6, Fig. 6
1990  Lemonea cylindrica (Girty) – Senowbari-Daryan, p. 151,

Pl. 54, Figs. 7—8, Pl. 57, Figs. 2, 4—6 (synonymy)

1998b  Lemonea  cylindrica (Girty) – Rigby, Senowbari-Daryan & Liu,

p. 62, Pl. 3, Fig. 1, Pl. 7, Figs. 1—4, 7, Pl. 13, Figs. 3, 6.

2003  Lemonea cylindrica (Girty) – Noé, Pl. 11, Fig. 1, Pl. 12, Fig. 2,

Pl. 31, Fig. 6, Pl. 35, Fig. 5

M a t e r i a l :

 Two specimens in thin section 15.

D e s c r i p t i o n :

 Two specimens of this sponge are avail-

able. The larger specimen is cut in longitudinal section,
the small specimen in oblique section, having a diameter
of only 5 mm.

The larger specimen has a height of 53 mm and a diame-

ter of at least 10 mm (Fig. 8.3). The cylindrical sponge has
tube-like monoglomerate chambers arranged in one layer,
radially and horizontally, around a spongocoel 2 mm in
diameter that passes through the full length of the sponge.
Outlines of chambers in cross sections are polygonal to
rounded polygonal, with diameters of 0.5 mm. Chamber
walls are 0.2 mm thick. They appear relatively thick and
are pierced by small unbranched pores. In longitudinal
section the tube-like chambers are oriented almost per-
pendicular to the axis of sponge. Chamber interiors lack
filling structures and vesiculae.

R e m a r k s :

 The specimens from Iran are smaller than

the general dimensions of L. cylindrica known from other
Permian localities of the world, but all other characteris-
tics correspond to the previously known specimens of L.

O c c u r r e n c e :

  Lemonea,  in general, and L. cylindrica

in particular, is an abundant sponge in Permian reefs, espe-
cially in the Guadalupe Mountains in Texas and New
Mexico (Girty 1908b; Senowbari-Daryan 1990; Rigby et
al. 1998b; Fagerstrom & Weidlich 1999a,b; Weidlich &
Fagerstrom 1999; Noé 2003). The species is also known
from other Permian reef localities of the world (Senowbari-
Daryan 1990; Senowbari-Daryan & García-Bellido 2002).
L. cylindrica is reported here for the first time from Iran.

Class:  Calcarea? Bowerbank, 1864

Superorder:  Aspiculata Rigby & Senowbari-Daryan, 1996

Order:  Inozoida Rigby et Senowbari-Daryan, 1996

Family:  Peronidellidae  Wu, 1991

D i a g n o s i s :

 Sponges “in which excurrent system con-

sists of only a spongocoel or a multispongocoel in the axial
region of sponges. The water system is Peronidella-type or
Sestrostomella-type” (Wu 1991: p. 56).

T y p e   g e n u s :

  Peronidella Hinde, 1893.

Subfamily:  Peronidellinae Wu, 1991

D i a g n o s i s :

 “Sponges with axial spongocoel but lack-

ing inhalant and exhalant canals” (Rigby & Senowbari-
Daryan 1996: p. 58).

Genus: Peronidella Hinde, 1893

(pro  Peronella Zittel, 1878)

D i a g n o s i s :

 See Zittel (1878: pp. 30, 120), Rigby & Se-

nowbari-Daryan (1996: p. 58).

T y p e   s p e c i e s :  Spongites pistilliformis



 Peronidella recta grossa Wu, 1991

(Fig. 10.1—6,7S,8,9—10, Fig. 8.4)

1991 Peronidella recta grossa subsp. nov. – Wu, p. 63-64, Pl. 7,
        Figs. 7—8
1994 Peronidella sp. – Senowbari-Daryan & Ingavat-Helmcke, p. 24,
      Pl. 3, Fig. 3, Pl. 6, Fig. 5 (non Pl. 5, Fig. 7/B, Pl. 9, Figs. 3—4)
2004 Inozoid  sponge – Flügel, Pl. 42/IS

M a t e r i a l :

 Numerous specimens in thin sections 2/3, 2/5,

7/2b, 10/4a, 10, 10/4/6, 10/7, 12/1, 13/6, 13/8.

D e s c r i p t i o n :

 This Peronidella is the smallest species

among all species known for the genus from the Permian
(see Table 1). It is a single stemmed (not branched) cylin-
drical species, having an outer diameter that ranges from
2.5 mm to a maximum of 4.2 mm. An axial to peripherally
located spongocoel, with a circular cross section, passes
through the whole sponge. Diameter of spongocoel ranges
between 0.5 mm and 1.75 mm. The diameter of spongo-
coel seems to be independent of the sponge diameter. The
widest spongocoel of 1.75 mm is in a specimen with an
outer diameter of 3.25 mm, so the spongocoel makes al-
most 53 % of the sponge. However, the largest specimen is
4.25 mm in diameter, but has a spongocoel only 1.4 mm in
diameter (almost 33 %). The sponge wall, usually with the
same size or less as the diameter of spongocoel, is com-
posed of reticular fibrous structure. Inhalant and exhalant
canals, a cortex (outer dermal layer) and endowall (spon-
gocoel wall) are totally lacking. Primary skeletal mineralo-
gy was most probably aragonite, microstructure and
spicules are not known.

R e m a r k s :

 All species of the genus Peronidella known

from the Permian are listed in Table 1. The sponge diameter
and other dimensions of the Peronidella from Iran fit with
Peronidella recta grossa described by Wu (1991). Howev-
er, this species was originally described and illustrated
poorly by Wu. He figured only two cross sections in Pl. 7,
Figs. 7—9. For that reason we have described and figured
several specimens in this paper to show the characteristics
of the species.

The general characteristics of P. recta grossa are similar to

Peronidella labiaformis Wu (1991), which was also de-
scribed insufficiently and illustrated by this author. However,
according to Wu’s description P. recta grossa differs from P.
labiaformis by smaller dimensions of the sponge, a cylindri-
cal shape (conical in P. labiaformis) and a spongocoel that is
circular in cross section (“lip-like” in P. labiaformis).

Flügel (2004, Pl. 42) illustrated a thin section photograph

of a sample from the Upper Permian sponge from western
Hubei (south China) containing several specimens of P. rec-
ta grossa. Apparently this species is an abundant sponge in
the Upper Permian of China.

background image


O c c u r r e n c e :   Peronidella recta grossa

 in known from

the Permian of China (Wu 1991; Flügel 2004), Thailand
(Senowbari-Daryan & Ingavat-Helmcke 1994), and now
from the Permian of Kuh-e Bagh-e Vang (Shotori Mts, Iran).

Genus: Bicoelia Rigby, Senowbari-Daryan & Liu, 1998

S y n o n y m y :   Hikorocodium

 (pars) Endo, 1951.

D i a g n o s i s :

 “Single or branched cylindrical sponge,

with two distinct, relatively broad, spongocoels that extend
vertically through entire sponge. Each spongocoel with dis-
tinct wall and these walls side by side, lacking fibrous struc-
ture between them. Skeleton around spongocoel walls and
differentiated outer wall composed of irregularly arranged
to reticulate fibrous structure which appears finer textured
toward exterior of sponge. Walls of spongocoel pierced by
numerous pores that branch laterally into pores between
skeletal fibers. Because of skeletal elements within spongo-
coels, some sections may falsely appear as though sponge
has three or four spongocoels” (Rigby et al. 1998b: p. 73).

T y p e   s p e c i e s :

  Bisiphonella tubulara Senowbari-

Daryan & Ingavat Helmcke, 1994.

O t h e r   s p e c i e s :

  Bicoelia guadalupensis Rigby, Se-

nowbari-Daryan & Liu, 1998.

R e m a r k s :

  Bicoelia Rigby, Senowbari-Daryan & Liu

(1998),  Bisiphonella Wu (1991) and Imperatoria De Grego-
rio (1930) are characterized by two axial canals. For differ-
entiation of these genera see Rigby et al. (1998b: pp. 72—73).

Bicoelia spinosa nov. sp.

(Fig. 9.3/T, Fig. 10.7/T, Fig. 11.6—12, Fig. 13.7)

1984  Peronidella sp. B. – Flügel et al., p. 402, Pl. 38, Fig. 7
1994  Bisiphonella tubulara nov. sp. (pars). – Senowbari-Daryan &

Ingevat-Helmcke, Pl. 6, Figs. 1—2/A

1988 Inozoa or Guadalupia? sp. – Senowbari-Daryan & Di Ste-

fano, Pl. 5, Fig. 6., Pl. 6, Fig. 2

D e r i v a t i o   n o m i n i s :

 Named for the spine-like ele-

ments on the outer surface of the skeleton.

H o l o t y p e :

 Specimen cut in longitudinal section and il-

lustrated in Fig. 11.12/H (thin section 8/1b).

P a r a t y p e s :

 All specimens illustrated in Fig. 9.3/T,

Fig. 10.7/T, Fig. 11.6—11, Fig. 13.7.

L o c u s   t y p i c u s :

 Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :

 Lower Permian (Bolorian, Kun-

gurian) of Jamal Formation.

D i a g n o s i s :

 Small species with two axial spongocoels

separated by a thin wall. Exowall and endowall well devel-
oped. Exowall usually thicker than the endowall. Loose fi-
brous structure between the exo- and endowall. Sponge
surface with small depressions appearing as spine-like ele-
ments in thin section.

D i f f e r e n t i a l   d i a g n o s i s :

 See remarks after the de-


M a t e r i a l :

 Numerous specimens in thin sections 1/4, 1/5b,

7/1, 8/1b, 10/4a, 12/1, 12/4, 13/5, and 13/7.

D e s c r i p t i o n :

 This small, straight or curved species has

heights of up to 20 mm and diameters between 2 mm and
5 mm. The most distinctive characteristics of the sponge are
the two more or less axial canals, the small depressions at
the outer surface, which appear spine-like in thin section
(Fig. 9.3T, Fig. 11.9, Fig. 13.7), and the loose fibre structure
between the exo- and endowalls. Some specimens
(Fig. 11.8) have three axial canals. The exowall is usually
thicker (see Table 2) than the endowall. The two axial ca-
nals are usually separated by a wall having the same thick-
ness as the fibre structure. However, in some sections the
wall between the two canals is not evident.

A loose fibre structure fills between the endo- and exow-

all. The spaces between the fibres, which appear circular or
angular, are larger than the thickness of the fibres (Fig. 11.7,
Fig. 13.7). The outer surface of the sponge in some speci-
mens is annulated (Fig. 10.7/T, Fig. 11.10).

The holotype (Fig. 11.12/H) is a curved specimen cut in

longitudinal section and having a height of 20 mm and a di-
ameter of 3.5 mm. More or less axially placed canals have a
combined diameter of 1.8 mm (one 0.8 mm, the other

Species SD 







P. baloghi 




– – 

– – 

– – 

U. Permian 

P. beipeiensis 

6.8 (16–21) 





M.-U. Perm. 

P. digitata 






U. Permian 

P. gravida 

8.5 2.0–5.0 





Permian  4 

P. labiaformis 





– – 

M. Permian 

P. magna 

14–40 7.0–22  3–10 0.14–0.24 




P. minima 






U. Permian 

P. multiosculata 

1–2 (0.2–0.6) 




U. Permian 

P. minicoeliaca 

13–21 3.75 4.8–5.7 

0.13–0.20 0.15 M. 

Permian  4 

P. recta grossa 

3.6–4.7 1.0–1.8 1.0–1.5 0.1–0.15 




P. recta recta 






M. Permian 


P. regulara 






M.-U. Perm. 

P. rigbyi** 

4–6 1.2–2.0 





Permian  6 


Table 1: Dimensions of Peronidella species known from the Permian of the world. SD – diameter of sponge, DS – diameter of spongo-
coel,  TW – thickness of the sponge wall around the spongocoel, TF – thickness of the fibre skeleton, SFS – space between the fibre
skeleton, M – Middle, U – Upper. All dimensions in mm. 1 – H.W. Flügel (1973), 2 – Rigby et al. (1989b), 3 – Rigby & Senowbari-
Daryan (1996), 4 – Wu 1991, 5 – Hinde 1893, 6 – Senowbari-Daryan (1991), 7 – Rigby et al. 1994. * – dimensions according to
Wu (1991), ** – pro Peronidella parva Rigby, Fan et Zhang, non Peronidella parva Nutzubidze, 1964 (see Senowbari-Daryan 1991).

background image

394                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 10.  1—10 – Peronidella recta grossa Wu and Bicoelia spinosa nov. sp. (7/T) from the Permian reefal limestones of the Jamal Forma-
tion of Kuh-e Bagh-e Vang, Shotori Mountains. 1 – The longitudinal sections through three specimens show their relatively wide spongo-
coels and their sponge walls with reticular fibrous structure. 10/4/6. 2 – The cross section shows the reticular fiberous structure of the wall
without distinction of exo- and endowalls. 13/8. 3 – Longitudinal section exhibits the wide spongocoel and loose fibrous structure of the
sponge wall. 12/1. 4 – Longitudinal, transverse and oblique sections of three (or four) specimens 7/2b. 5 – The cross sections through
three specimens show the same character as in Fig. 2. 10/4a. 6 – The cross section shows the same character as in Fig. 2. 13/8. 7 – Per-
onidella recta grossa (S) and Bicoelia spinosa nov. sp. (T), which shows some outer annulation, and the two spongocoels are recognizable
in the lower part. 10/4a. 8 – Longitudinal and oblique sections through two specimens. 2/5. 9 – Longitudinal section showing details of
the character seen in Fig. 1. 10/7. 10 – Longitudinal to oblique section. 10.  Scale bars: for Fig. 1 = 2  mm; for Figs. 2—10 = 1   mm.

background image


0.9 mm,  with  a  wall  0.1 mm  thick  between  them).  The

wall  between  the  canals  has  the  same  thickness  as  the

fibrous  structure  around  the  canals.

Remarks:  Bicoelia  spinosa  nov.  sp.  differs  from  the

Upper  Permian  species  B.  tubulara  Senowbari-Daryan  &

Ingavat-Helmcke  (1994)  of  the  Phrae  province  (northern

Thailand)  by  having  fibre  structure  between  the  exo-  and

endowall.  Two  specimens,  however,  described  as  Bisi-

phonella  tubulara  and  illustrated  in  Pl. 6,  Figs. 1–2/A  by

Senowbari-Daryan  &  Ingavat-Helmcke  (1994)  are  as-

signed  to  Bicoelia  spinosa  in  this  paper.

The  Iranian  species  differs  from  B.  guadalupensis  de-

scribed by Rigby, Senowbari-Daryan & Liu (1998) from

the  Permian  Upper  Capitan  Limestone  of  the  Guadalupe

Mountains,  New  Mexico  and  Texas,  by  the  smaller  di-

ameter  of  the  Iranian  sponges  (B.  spinosa:  2.3–5.0 mm,

B.  guadalupensis:  5–10 mm)  and  by  the  spine-like  ap-

pearing elements on the outer surface of the Iranian species.

The  longitudinal  sections  of  B.  spinosa  nov.  sp.  may

appear  like  Peronidella  recta  grossa,  if  only  one  spon-

gocoel  is  cut  (compare  Fig. 10.8T).  In  such  sections  B.

spinosa  differs  from  P.  recta  grossa  by  having  a  spon-

gocoel  wall,  which  is  lacking  in  P.  recta  recta,  and  by

the  type  of  fibre  structure  around  the  spongocoel.

Occurrence:  B.  spinosa  nov.  sp.  is  known  from  the

Permian  of  Slovenia  (Flügel  et  al.  1984:  described  as

Peronidella  sp.  B),  from  Thailand  (Senowbari-Daryan

&  Ingavat-Helmcke  1984:  Pl. 6,  Figs. 1–2/A,  described

as  Bisiphonella  tubulara),  from  Sicily  (Senowbari-

Daryan  &  Di  Stefano  1988,  described  as  “Inozoa  or

Guadalupia  sp.”)  and,  now,  from  the  Lower  Permian  of

Kuh-e  Bagh-e  Vang,  Shotori  Mts,  Iran.

Subfamily:  Heptatubispongiinae  Rigby  &  Senowbari-

Daryan,  1996

Genus:  Heptatubispongia  Rigby  &  Senowbari-Daryan,


Diagnosis:  “Cylindrical  to  branched  sponge  with  rela-

tively large axial canal or spongocoel, and 6 to 8 symmetri-

cally  arranged,  collateral  vertical  canals  located  near  pe-

riphery  of  sponge.  Relatively  coarse  reticular  fibrous  skele-

tal  structure  fills  between  canals.  Outer  surface  may  be

weakly  annulated  and  growth  lines  clearly  developed  in

some  specimens.  A  few  ostia  occur  in  outer  surface.  Ostia

may  unite  to  form  larger  openings”  (Rigby  &  Senowbari-

Daryan  1996:  p.  83).

We  add  to  that  diagnosis  that  the  number  of  collateral

canals may be less than 6 or more than 8, up to 10.

Type  species:  Heptatubispongia  symmetrica  Rigby

&  Senowbari-Daryan,  1996.

Remarks:  See  following  description  of  the  species.

Heptatubispongia  symmetrica  Rigby  et  Senowbari-

Daryan,  1996

(Fig. 11.1–5,  Fig. 13.1/H,2/H)

1961  Hikorocodium  elegantae  Endo  —  Endo,  p. 135,  Pl. 4,  Fig. 7

1977 Graminospongia  girtyi  (Parona)  —  Termier  &  Termier,  Pl. 8,  Fig. 1

1980  Hikorocodium  elegantae  Endo  —  Flügel,  Pl. 2,  Fig. 7

1996  Heptatubispongia  symmetrica  nov.  sp.  —  Rigby  &  Senowbari-

Daryan,  p. 83–84,  Pl. 33,  Figs. 9–16,  Pl. 49,  Fig. 9

Material:  Numerous  specimens  in  several  thin  sections.

Description:  Cylindrical  and  usually  single  stemmed,

rarely  branched,  specimens  of  this  sponge  reach  diameters  of

up  to  5 mm  (Table 3).  The  most  characteristic  features  of  this

sponge are a main, large, axial spongocoel and 6 to 8 (on occa-

sion less than 6 or up to 10) small, and symmetrically arranged,

collateral  vertical  canals  that  are  located  near  the  periphery  of

the stem. Both types of canals have their walls pierced by nu-

merous pores. The main axial spongocoel reaches diameters up

to 1 mm, and the collateral canals are smaller, reaching diame-

ters of less than 1 mm. The spaces between the canals are filled

with relatively fine reticulate fibrous skeleton. Outer surface of

the sponge may not be smooth; grooves or spine-like structures

(Fig. 11.4–5)  can  be  recognized.

Remarks:  Specimens  described  as  Hikorocodium  ele-

gantae  Endo  by  the  same  author  (Endo  1961,  Pl. 4,  Fig. 7)

and  by  Flügel  (1980:  Pl. 2,  Fig. 7)  should  be  assigned  to

Heptatubispongia  symmetrica  Rigby  &  Senowbari-Daryan.

Occurrence:  Heptatubispongia  symmetrica  is  known

from  the  Permian  of  Japan  (Endo  1961:  described  as  Hiko-

Table 2: Measurements of Bicoelia spinosa nov. sp. DS — diame-

ter of sponges, DBC — diameter of both canals, DIC — diameter

of individual canals, TEW — thickness of exowall, TSP — thick-

ness of endowall, H — holotype. All data in mm.

Thin section  DS 





























8/1b (H) 






















































Table 3: Measurements of Heptatubispongia symmetrica Rigby & Se-

nowbari-Daryan  in  cross  sections.  DS  —  diameter  of  sponge,

DAS — diameter of axial spongocoel, DPC — diameter of peripheral

canals, NPC — number of peripheral canals. All measurements in mm.

Thin section 

















































background image

396                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 11.  Heptatubispongia symmetrica Rigby et Senowbari-Daryan and Bicoelia spinosa nov. sp. from the Permian reefal limestones of the
Jamal Formation of Kuh-e Bagh-e Vang, Shotori Mountains. 1—5 – Heptatubispongia symmetrica Rigby et Senowbari-Daryan. 1 – Longi-
tudinal to oblique section through a branched specimen. The axial spongocoel and some collateral peripheral canals are cut in both branches.
A third specimen with less well developed peripheral canals (only 3 or 4) is also cut in cross section. 10/7. 2 – The cross section of a speci-
men exhibits the large axial spongocoel and 8 collateral peripheral canals. 1/6. 3 – Cross and oblique sections of two specimens exhibit the
large axial spongocoel and 8 or 10 peripheral collateral canals. 10/2. 4 – The oblique section of a specimen exhibits the large axial spongo-
coel and some peripheral collateral canals. 11/2. 5 – The oblique section of a specimen exhibits the axial spongocoel and only 5 collateral pe-
ripheral canals. 10/3. 6—12 – Bicoelia spinosa nov. sp. 6 – The cross section shows the two axial spongocoels. 1/4. 7 – The cross section
shows only one spongocoel and the loosely packed fibrous structure between the exo- and endowalls. 13/7. 8 – The cross section exhibits the
(three?) axial spongocoels. 7/1. 9 – The cross section exhibits character comparable to those shown in Fig. 6. 12/1. 10 – The oblique section
exhibits the axial canals and the loose packed fibrous structure between the exo- and endowalls. 7/1. 11 – Cross section similar to those
shown in Figs. 6 or 9. 13/5. 12 – Section through holotype (H) and a paratype. The holotype shows two axial spongocoels in the upper part,
with exo- and endowalls and reticular fibrous structure between the two walls. 8/1b.   Scale bars = 1 mm.

background image


rocodium elegantae), from the Carnic Alps, Austria (Flügel
1980: described as Hikorocodium elegantae Endo), and
now from Kuh-e Bag-e Vang, Shotori Mts, Iran. H. symmetri-
ca is also an abundant species within the Lower Permian
reef boulder embedded in the Lercara Formation in the Sosi
Valley, Sicily (unpublished material of B. Senowbari-Daryan,
compare Senowbari-Daryan & Di Stefano 1988) and in the
Upper Permian of Tunisia (Rigby & Senowbari-Daryan 1996).

Family:  Maeandrostiidae Finks, 1971

Genus:  Maeandrostia Girty, 1908a

D i a g n o s i s :

 See Rigby & Mapes (2000: p. 43) and

Finks & Rigby (in Finks et al. 2004: p. 644).

T y p e   s p e c i e s :

  Maeandrostia kansasensis Girty, 1908a.

O t h e r   s p e c i e s :

  Maeandrostia rostrata Deng, 1982a,

Maeandrostia triassica Senowbari-Daryan et al., 1993.

R e m a r k s :

 The sponge species originally described as

Maeandrostia tortacloaca by King (1933) was transferred
to the genus Fissispongea by the same author (1938).

De Laubenfels (1955: p. 103) listed Maeandrostia un-

der the sponges of “Uncertain Class”. Finks (1960: p. 27)
assigned  Maeandrostia to the sphinctozoan sponges.
However,  Maeandrostia represents definitely an inozoid
sponge, and was placed in the family Peronidellidae by
Senowbari-Daryan et al. (1993) and Rigby & Mapes
(2000). Finks (1971: p. 292) proposed the family Mae-
adrostiidae, and Finks & Rigby (in Finks et al. 2004: p. 644)
attributed  Maeandrostia and five other genera, including
Eurysiphonella (Haas 1909) to this family. Eurysiphonella,
known from the Rhaetian Zlambach Formation of Fischer-
wiese (Altaussee/Austria), is clearly a porate sphinctozoid
sponge and was placed in synonym with Amblysiphonella
Steinmann by Senowbari-Daryan (1990). Following the
systematic classification of inozoid sponges by Finks &
Rigby (in Finks et al. 2004), the genus Maeandrostia is
placed here in the family Maeandrostiidae.

The genus Fissispongia King (1938) is very similar to

Maeandrostia Girty, but differs from the latter genus espe-
cially in having two spongocoels (for more discussion see
Rigby & Mapes 2000: p. 42).

O c c u r r e n c e :

 The genus Maeandrostia is known from

the Carboniferous of USA (Kansas: Girty 1908a; King 1933;
Mehl-Janussen 1999; Texas: Rigby & Mapes 2000), from the
Permian of China (Deng 1982a,b), Slovenia (Flügel et al.
1984 described as “Peronidella sp. B”), Sicily (Senowbari-
Daryan & Di Stefano 1988), Oman (Weidlich 1992), and Iran
(this paper); and from the Middle Triassic (Anisian) of the
southern Alps/Italy (Senowbari-Daryan et al. 1993).

Maeandrostia kansasensis Girty, 1908a

(Fig. 12.1—6)

1908a  Maeandrostia kansasensis new species – Girty, p. 285,  Pl. 15,

Figs. 1—7

1933  Maeandrostia kansasensis Girty – King, p. 82, Pl. 7, Figs. 9—10
1955  Maeandrostia kansasensis Girty – De Laubenfels, p. 103,

Fig. 885A,B

1984  Peronidella sp. B – Flügel et al., p. 204, Pl. 38, Figs. 8—9 (non

Fig. 7)

1988  Maeandrostia sp. – Senowbari-Daryan & Di Stefano, p. 6,

Pl. 6, Fig. 4, Pl. 8, Figs. 2—4

1992  Peronidella sp. – Weidlich, p. 32—33, Pl. 7, Fig. 7
1999  Maeandrostia kansasensis Girty – Mehl-Janussen, Pl. 12,

Figs. 7, 10

2000  Maeandrostia kansasensis Girty – Rigby & Mapes, p. 43,

Pl. 4, Figs. 1—4

2004  Maeandrostia  kansasensis  Girty – Finks & Rigby (in Finks

et al.), p. 644, Fig. 424/2b—c

D e s c r i p t i o n :

 The single and unbranched specimens

of this species are slender, having an outer diameter be-
tween 1.75 mm and 7.5 mm (Table 4). The largest speci-
men has a length of almost 8 cm. An axial spongocoel,
whose diameter is dependent on the diameter of the
sponge (Table 4), passes through the complete body of the
sponge. An endowall and an exowall are well developed.
The space between these walls is filled by a loose fibrous
skeleton with irregular arrangement or reticulate structure
connecting both walls. The fibrous skeleton and the endo-
and exowall are pierced by openings. Ostia (usually
0.2—0.4 mm in diameter) in the outer wall may be lipped.
The fibrous skeleton (primary aragonite) is composed of
spherulites. Spicules are absent.

R e m a r k s :  

Girty (1908a) gave a maximum sponge di-

ameter of 13 mm for Maeandrostia  kansasensis. Specimens
from Kuh-e Bagh-e Wang seem to be smaller than Girty’s
specimens but all other characteristics are identical.

O c c u r r e n c e :

  M. kansasensis is known from the Car-

boniferous of the USA (Kansas: Girty 1908a; King 1933;
Mehl-Janussen 1999; Texas: Rigby & Mapes 2000).

M. kansasensis seems to be an abundant sponge in Permi-

an reefs in the Tethyan realm. It was described as Peronidel-
la from Middle Permian reef limestones of Slovenia (Flügel
et al. 1984) and from the Upper Permian of Oman (Weidlich
1992). However, Peronidella differs from Maeandrostia by

Table 4: Measurements of skeletal elements of Maeandrostia kan-
sasensis Girty. D – outer diameter of sponge, DS – inner diame-
ter of spongocoel, R – percent ratio sponge diameter/spongocoel
diameter,  WD  – thickness of inter- or exowall, OD – inner di-
ameter of ostia, FD  – thickness of fiber skeletal elements. All
measurements in mm.

Thin section 

DS — R WD  OD  FD 



1.00 — 30.7 

0.20 0.5 0.20 



0.60 — 21.8 




„ 2.25 

0.75 — 33.3 

0.20 – 0.20 

10/4b 3.25 

0.75 — 23.0 

0.40 – 0.40 

10/4a 2.50 

0.50 — 20.0 

0.35 0.4 0.35 

2/5 4.25 

1.50 — 35.2 

0.25 – 0.25 



1.50 — 33.3 

0.40 – 0.30 



2.25 — 32.1 

0.25 – 0.35 

„ 4.50 

1.10 — 24.4 

0.25 – 0.25 

„ 4.75 

1.50 — 31.5 

0.25 – 0.35 

„ 5.75 

2.25 — 39.1 

0.40 – 0.35 

„ 6.25 

2.25 — 36.0 

0.25 – 0.35 

„ 4.75 

1.50 — 31.5 

0.30 – 0.30 

„ 3.75 

0.80 — 21.3 

0.30 – 0.35 



0.50 — 28.5 

0.15 – 0.20 



2.00 — 33.3 

0.40 – 0.30 

2/4 7.50 

2.00 — 26.6 

0.25 – 0.30 

1/7 6.00 

2.50 — 41.6 

0.25 – 0.25 


background image

398                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 12.  Maeandrostia kansasensis Girty and Maeandrostia radiata nov. sp. from the Permian reefal limestones of the Jamal Formation of
Kuh-e Bagh-e Vang, Shotori Mountains. 1—6 – Maeandrostia kansasensis Girty. 1 – Cross and oblique sections through several specimens
8/12b. 2 – The longitudinal and cross sections show the axial spongcoel and the coarse fibrous structure of the sponge wall. 8/12a. 3 – The
longitudinal section shows the axial canal, with perforated exo- and endowalls and the loose fibrous structure between the walls. 2/4. 4 – The
marginally axial section exhibits same characteristics as Fig. 2. 1/5b. 5 – The cross section exhibits the reticular fibrous structure between the
weakly developed exo- and endowall. 1/4. 6 – Cross section. 9/1. 7—8 – Maeandrostia radiata nov. sp. 7 – Oblique sections through several
specimens. Arrow indicates a rimmed ostium. (H) Heptatubispongia symmetrica Rigby & Senowbari-Daryan. 12/1. 8 – The cross section ex-
hibits the radially arranged and coarse fibers between the exo- and endowalls. 10/5.  Scale bars: for Figs. 1—7 = 2 mm; for Fig. 8 = 1 mm.

background image


having a much finer fiber skeleton and, especially, by the
lack of ostia. Maeandrostia  kansasensis is an abundant
sponge in Lower Permian reef boulders imbedded in the
Lercara Formation in Sicily (Senowbari-Daryan & Di Ste-
fano 1988) and in Permian reefal limestones in Kuh-e Bag-e
Vang in the Shotori Range, Iran (this paper).

Maeandrostia radiata nov. sp.

(Fig. 12.7—8, Fig.


13.1/F,2/F, 4—6)

D e r i v a t i o   n o m i n i s :

 Radiatus (lat. = radiating). Named

for the radially arranged skeletal fibres between the exo- and
endowall, as seen in transverse section.

H o l o t y p e :

 Specimen illustrated in Fig. 13.5 (thin sec-

tion 2/5a).

P a r a t y p e s :

 All specimens figured in Fig. 12.7—8,

Fig. 13.1F,2/F,4,6.

L o c u s   t y p i c u s :

 Kuh-e Bagh-e Vang, south of the town

of Shirgesht, Shotori Mts, Iran.

S t r a t u m   t y p i c u m :

 Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :

 Slender specimens of Maeandrostia with

coarse fibrous skeleton and thick exo- and endowalls (spon-
gocoel wall). Fibrous skeleton has radial arrangement be-
tween the exo- and endowall. Both walls are pierced by
scattered openings. Ostia of outer wall are lipped.

D i f f e r e n t i a l   d i a g n o s i s :

 See remarks after descrip-

tion of species.

M a t e r i a l :

 Numerous specimens in thin sections 2/5a

(holotype), 3/4, 10/5, 10/4a, and 12/1.

D e s c r i p t i o n :

 The unbranched specimens of this

slender sponge reach heights of more than 40 mm, with
diameters of up to 4.5 mm, with most specimens about
3 mm in diameter. The stems are characterized by thick
exo- and endowalls. Both walls are pierced by large scat-
tered openings 0.5 mm in diameter. The clearly lipped
ostia reach diameters of between 0.4 and 0.5 mm
(Fig. 12.7: arrow, Figs. 13.6: arrow). The space between
the exo- and endowalls has almost the same thickness as
the walls and is filled with a loose and coarse fibrous
skeleton. The fibrous skeleton has the same thickness as
the exo- or endowall and appears radially arranged in
cross sections (Fig. 12.8, Fig. 13.2/F).

A spongocoel 0.5—1.2 mm in diameter and circular in

cross section passes through the whole sponge. The micro-
structure is composed of spherulites that are 0.04—0.05 mm
in diameter and are recognizable in thin sections.

The holotype (Fig. 13.5) is a specimen cut in longitudinal

section and has a length of at least 40 mm with a diameter of
3 mm. The spongocoel appears to be only 0.5 mm in diame-
ter, but possibly is cut only tangentially.

R e m a r k s :

  Maeandrostia radiata nov. sp. differs from

the type species M. kansasensis, described by Girty (1908a)
from the Carboniferous of Allen limestone (Chanute, Kan-
sas), in having a smaller diameter, thiner sponge mass,
thicker exo- and endowalls. In cross section fibres between
the exo- and endowall in M. radiata appear radially ar-
ranged, but in M. kansasensis they are reticulate (compare
Fig. 12.5—6,8).

Maeandrostia rostrata, described by Deng (1982a: p. 192,

Pl. 1, Fig. 3a,b) from the Permian of Xizang (China), is poor-
ly described and illustrated. However, the species from Chi-
na differs from M. radiata by having a very narrow
spongocoel, and long exauli of the ostia.

Maeandrostia triassica, described by Senowbari-Daryan

et al. (1993) from the Middle Triassic (Anisian) reef boul-
ders of Southern Alps (Dolomites, Italy), is differentiated
from  M. radiata nov. sp. by having fine skeletal elements,
and especially by having long exauli of the ostia.

O c c u r r e n c e :

  Maeandrostia radiata nov. sp. is known

only from the Permian of Kuh-e Bagh-e Vang (Shotori Mts,
eastern Iran). However, the species may also occur in Lower
Permian reef boulders embedded in the Lercara Formation,
Sosio Valley, Sicily.

Family:  Auriculospongiidae Termier et Termier,

(in Termier et al.) 1977

Subfamily:  Acoeliinae Wu, 1991

D i a g n o s i s :

 “Cylindrical to club-shaped inozoid sponges

lacking spongocoel or major inhalant and exhalant canals in
fibrous skeletal net” (Rigby & Senowbari-Daryan 1996: p. 38).

Genus:  Solutossaspongia Senowbari-Daryan & Ingavat-

Helmcke, 1994

D i a g n o s i s :

 “Cylindrical and unbranched sponge, each

with a distinct thick outer wall. The skeleton interior of each
sponge is composed of loose reticular fibre. Sponge lacks a
spongocoel” (Senowbari-Daryan & Ingavat-Helmcke 1994:
p. 25).

T y p e   s p e c i e s :

  Solutossaspongia crassimuralis Se-

nowbari-Daryan & Ingavat-Helmcke, 1994.

Solutossaspongia tabasensis nov. sp.

(Fig. 13.8/S,9, Fig. 14.1-3, Fig. 15.7)

D e r i v a t i o   n o m i n i s :

 From Tabas, the next large town

nearest to the type locality.

H o l o t y p e :

 Fig. 14.3 (thin section 7/1).

P a r a t y p e s :

 All specimens illustrated in Fig. 13.8—9,

Fig. 14.1—2.

L o c u s   t y p i c u s :

 Kuh-e Bagh-e Vang, south of the town

Shirgesht, Shotori Mts, eastern Iran.

S t r a t u m   t y p i c u m :

 Lower Permian (Bolorian, Kun-

gurian) of the Jamal Formation.

D i a g n o s i s :

 Cylindrical sponge with a distinct and po-

rous outer wall. The interior of the sponge is filled by fine re-
ticular fibrous structure. Lacks spongocoel and inhalant or
exhalant canals. Spicules not known.

D i f f e r e n t i a l   d i a g n o s i s :

 See remarks after the spe-

cies description.

M a t e r i a l :  

In thin sections 7/1 (holotype), 8/1/a and 8/1b.

D e s c r i p t i o n :

 This cylindrical to club-shaped sponge

has a maximum diameter of 5 mm. The height of the sponge is
not known. It is characterized by a distinct porous exowall
0.5—1 mm thick. A spongocoel, inhalant and exhalant ca-
nals are lacking. The interior of the sponge is filled by a fine

background image

400                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 13.


 Maeandrostia radiata nov. sp., Sollasia cylindrica nov. sp., Heptatubispongia symmetrica Rigby et Senowbari-Daryan, Bicoelia spinosa

nov. sp., Solutossaspongia tabasensis nov. sp., and Lercaritubus problematicus Flügel, Senowbari-Daryan et Di Stefano from the Permian reefal
limestones of Jamal Formation of Kuh-e Bagh-e Vang, Shotori Mountains. 1 – Oblique sections of two specimens of Maeandrostia radiata nov. sp.
(F), with oblique section of Heptatubispongia symmetrica Rigby et Senowbari-Daryan (H) that shows the large axial canal and some collateral canals,
and a section of Sollasia cylindrica nov. sp. (S). 3/4. 2 – Heptatubispongia symmetrica Rigby et Senowbari-Daryan (H) and Maeandrostia radiata
nov. sp. (F) with radially arranged fibrous skeleton between the exo- and endowalls. 2/5. 3 – Sollasia cylindrica nov. sp. The longitudinal section

background image


reticular fibrous structure (0.1—0.15 mm thick), which
shows, in longitudinal section, a weak orientation parallel
to the axis of the sponge (Fig. 14.3).

The holotype (Fig. 14.3) is a longitudinal to oblique lon-

gitudinal section 15 mm long and 5 mm in diameter, which
exhibits all characteristics of the sponge. At one end
(Fig. 14.3: upper-right corner) it shows a narrow extension,
with an open end that could be broken at this point.

R e m a r k s :   Solutossaspongia tabasensis nov. sp. differs

from the type species S. crassimuralis, described by Senow-
bari-Daryan & Ingavat-Helmcke (1994) from the Permian of
Phrae province (northern Thailand), by having a fine inter-
nal fibrous structure and porous exowalls. Finks & Rigby
(in Finks et al. 2004) re-illustrated from Senowbari-Daryan
& Ingavat-Helmcke (1994: Pl. 4, Fig. 3), erroneously, a spe-
cies of sphinctozoid sponge Intrasporeocoelia hubeiensis
Fan & Zhang (1985) as Solutossaspongia.

O c c u r r e n c e :   Solutossaspongia tabasensis nov. sp. is

presently known only from the Permian of Kuh-e Bagh-e
Vang (Shotori Mts, Iran).

Sponge gen. et sp. indet 1

(Fig. 14.4,5)

D e s c r i p t i o n :  This cylindrical and branched sponge

lacks a spongocoel, distinctly inhalant and exhalant canals,
and reaches a maximum diameter of 10 mm. The sponge is
composed of fine reticulate fibrous skeleton. Some speci-
mens exhibit small inhalant canals in the periphery of the
sponge (Fig. 14.4).

R e m a r k s :  The systematic position of inozoid sponges

without a spongocoel, nor inhalant and exhalant canals, is
disputed. A detailed discussion of this problem was given in
Rigby & Senowbari-Daryan (1996: p. 21). For that reason
we describe this species here as gen. et sp. indet.

Sponge gen. et sp. indet 2 (Peronidella?)

(Fig. 15.1,3—4)

D e s c r i p t i o n :  This V- or U-shaped sponge species

has a diameter of 4—6 mm with a height of up to 8 mm.
The most characteristic feature of the sponge is its very
wide spongocoel and thin sponge wall, having a thick-
ness of 0.8—1.2 mm, which is variable within the same
sponge. The outer dermal surface of the wall is smooth
but the inner surface is very diffuse. The wall is pierced
by a labyrinthic branched pore system. The skeleton is re-
crystallized but relicts of spherulites were observed, indi-
cating the original microstructure.

R e m a r k s :  According to the definition of the genus

Peronidella, this sponge could be a species of that genus.

In addition to the above described sponges, abundant

sponge fragments of calcareous tubes or chambers also oc-
cur in the investigated thin sections. They could be differ-
ent inozoid or sphinctozoid sponge taxa but they cannot be
determined in detail (e.g. Fig. 15.2,5).


Incertae Sedis

Genus: Lercaritubus Flügel, Senowbari-Daryan

& Di Stefano, 1990

D i a g n o s i s :  “Sessile, tube-like multibranched organ-

ism with a calcareous skeleton, composed of thick wall seg-
ments put into one another. The aperture of the tubes widens
distally and is characterized by a distinct collar. The outer
surface of skeleton shows small polygonal depressions. The
interior of the tubes is subdivided by perforated tabulae and
shows an additional calcareous tissue. A few specimens
show small pores within the outer wall of the tubes” (Flügel
et al. 1990: p. 361).

T y p e   s p e c i e s :   Lercaritubus problematicus Flügel, Se-

nowbari-Daryan & Di Stefano, 1990.

Lercaritubus problematicus Flügel, Senowbari-Daryan

& Di Stefano, 1990

(Fig. 13.8/L, Fig. 15.8,9)

?1984 “Problematicum A” – Flügel, Kochansky-Deividé & Ramovs,

p. 197, Pl. 30, Figs. 13, 14

*1990  Lercaritubus problematicus nov. sp. – Flügel, Senowbari-

Daryan & Di Stefano, p. 361—362, Pl. 1, Figs. 1-16, Text-
Figs. 2—3

 1996 Lercaritubus problematicus Flügel, Senowbari-Daryan et Di Ste-

fano – Senowbari-Daryan & Rigby, p. 23, Figs. 3.1—3.7, 4.1—4.8

 1992 Lercaritubus problematicus Flügel et al. – Weidlich, p. 44—45,

Pl. 16, Fig. 3

D e s c r i p t i o n :   This tube-like, multibranched organism

has an outer diameter of up to 10 mm, with an inner diameter
of approximately 5 mm. The most characteristic feature of the
fossil are the segments inserted one into another and the de-
pressions of the outer surface of the tubes (Fig. 15.8—9). Be-
cause of recrystallization, boundaries between segments are
hardly recognizable in the Iranian material. The segments
have a distinct collar around the aperture. As observed in
specimens of the original material, and in Iranian specimens
too, the tubes can be rejuvenated internally (Fig. 15.9). Tabu-
lae-like elements occur within the tubes. A detailed descrip-
tion of the fossil was given by Flügel et al. (1990).

O c c u r r e n c e :   Lercaritubus problematicus was origi-

nally described from Lower Permian reef boulders embed-
ded in the Lercara Formation of western Sicily (Flügel et al.

Fig. 13. (Caption continued)      shows ill-defined annulation of the outer wall, and the wide opening between the chambers. 10/3. 4—6 – Mae-
androstia radiata nov. sp. 4 – The brous skeleton between the exo- and endowalls. The two spongocoels are cut in lower and upper parts of the
sponge. Note the spine-like elements on the outer surface. 1/5b. 8—9 – Solutossaspongia tabasensis nov. sp. 8 – Two specimens (S) cut in cross
sections show the fine internal fibrous skeleton and the thick exowall.  A specimen of Larcaritubus problematicus Flügel, Senowbari-Daryan et
Di Stefano (L). 9 – The transverse to oblique section shows characteristics like those in specimens shown in fig. 8. Because the central area is filled
with calcite it looks like a spongocoel. 7/1.  Scale bars: for Figs. 1—4, 6—9 = 1 mm; for Fig. 5 = 2 mm.

background image

402                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

Fig. 14.


 Solutossaspongia tabasensis nov. sp., Girtyocoelia beedei (Girty), Sollasia ostiolata Steinmann, Peronidella recta grossa Wu and

Sponge gen. et sp. indet 1 from the Permian reefal limestones of the Jamal Formation of Kuh-e Bagh-e Vang, Shotori Mountains. 1—3 – So-
lutossaspongia tabasensis nov. sp. 1 – Oblique sections through two specimens exhibiting the thick exowall and the relatively fine retic-
ular internal fibrous skeleton. 8/1a. 2 – The oblique section exhibits the same character as those seen in Fig. 1. 1/8a. 3 – Holotype. The
oblique to longitudinal? section shows almost the same characteristics as Fig. 1. This specimen exhibits at the right side of photograph an
opening (osculum?). The sponge is colonized by an undetermined sphinctozoan sponge with glomerate arrangement of the chambers.
7/1. 4—5 – Sponge gen. et sp. indet 1. 4 – Several specimens cut in cross sections. 10/2. 5 – Longitudinal section of a (or two?) branched
specimen. 13/4. 6 – Girtyocoelia beedei (Girty) (G). The section through one specimen shows four chambers, the axial spongocoel, and
several rimmed ostia (arrows), cross section of Peronidella recta grossa Wu (H), and a specimen of a fusulinid foraminifer (F). 2/3. 7 – Sol-
lasia ostiolata Steinmann. Longitudinal section through four chambers. 13/8.  Scale bars: for Figs. 1—3 = 1 mm; for Figs. 4—7 = 2 mm.

background image


Fig. 15.  Girtyocoelia beedei (Girty), Solutossaspongia tabasensis nov. sp., Heptatubispongia symmetrica Rigby et Senowbari-Daryan,
Sponge gen. et sp. indet 2, and Lercaritubus problematicus Flügel, Senowbari-Daryan et Di Stefano from the Permian reefal limestones of
the Jamal Formation of Kuh-e Bagh-e Vang, Shotori Mountains. 1– Sponge gen. et sp. indet 2. Cross section of a large specimen and lon-
gitudinal section through a U-shaped small specimen. Both specimens exhibit the wide spongoceol and the thin wall of sponge. Bryozoan
(D), Heptatubispongia symmetrica Rigby et Senowbari-Daryan (H). 9/1. 2 – Tube-like organisms (two specimens in photograph, possibly
sponges?) occur relative abundantly in the investigated material. 5/1. 3—4 – Sponge gen. et sp. indet 2. 3 – The cross section exhibits the
wide spongocoel and the thin wall of sponge. 15b. 4 – Longitudinal section through a U-shaped sponge shows the thin wall, with a
smooth outer surface and an uneven inner surface. 9/1.  5 – Several chambers of an undetermined sphinctozoid sponge (Parauvanella?),
with ostia. 8/3. 6 – Girtyocoelia beedei (Girty). Section through a recrystallized specimen with three chambers. 1/4. 7 – Solutossaspon-
gia tabasensis nov. sp.  Longitudinal section. 8/1a. 8—9 – Lercaritubus problematicus Flügel, Senowbari-Daryan et Di Stefano.  8 – The
longitudinal section shows the axial canal and the wall of the tube. Outer annulations are indicated by grooves in the outer surface. 7/1.
9 – The longitudinal section through a V-shaped specimen shows internal rejuvenescence of the specimen. 9/1.  Scale bars = 1 mm.

background image

404                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

1990). It is known also from the Permian reef limestone of
the Guadalupe Mountains, New Mexico, USA (Senowbari-
Daryan & Rigby 1996) and from the Upper Permian of
Oman (Weidlich 1992). The systematic position of Lercari-
tubus is still uncertain.

Comparision of the Permian sponges of Kuh-e

Bagh-e Vang with sponge faunas of some other

Permian localities

The sponge fauna of the Permian Jamal Formation of

Kuh-e Bagh-e Vang is represented by at least 7 sphinctozo-
an genera (2 new) and 9 species (3 new) and 5 inozoan genera
with 6 species (3 new).

Comparing the Permian sponge assemblage of the Jamal

Formation of Kuh-e Bagh-e Vang with sponge faunas of
some other Permian localities in western (Sicily), southern
(Oman, Tunisia) and eastern Tethys (China, Thailand), as
well as in the Guadalupe Mts (Texas/New Mexico, USA)
the Iranian sponge association is most similar to the
sponge associations of Lower Permian reef boulders from
the Sosio Valley, Sicily (Senowbari-Daryan & Di Stefano
1988, unpublished inozoid sponges from the same locali-
ty) and association from Oman. The sphinctozoid sponge
genera  Amblysiphonella, Girtyocoelia, and Sollasia, and
the inozoid genera Peronidella,  Maeandrostia, and Hep-
tatubispongia, and partly the problematic organism Ler-
caritubus seem to be more or less cosmopolitan organisms,
known from all or from the majority of these localities (Table 5).

The new sphinctozoid sponge genera and species Baghe-

vangia  minima and Shotorispongia  permica and S. biseria-
lis, and the new species Amblysiphonella tabasensis,
Sollasia cylindrica,  Maeandrostia radiata, and Solutoss-
pongia tabasensis seem to be endemic faunal elements and
are not known as yet from other localities. The inozoid spe-
cies Bicoelia spinosa nov. sp. occurs in Iran and in Thailand
(Senowbari-Daryan & Ingavat-Helmcke 1994: described as
Bisiphonella tubulara).

Organism association and facies of sponge-bearing
Permian reefal limestones of the Jamal Formation

in Kuh-e Bagh-e Vang

On the basis of occurrences and frequency of reef building

organisms, reefal limestones of the Jamal Formation exposed
in Kuh-e Bagh-e Vang should be classified as sponge-Tubi-
phytes-Archaeolothoporella-boundstones. The framework re-
sulted from the in-situ upright growth of coralline sponges
and incrustation of these organisms by couplets of dark and
light irregular layers, without internal microstructure, of
Archaeolithoporella and other moderate or rarely incrust-
ing organisms like Tubiphytes,  bryozoans,  and Pseudover-
miporella  (Fig. 8.4,8). Other frame-building organisms, like
corals, are extremely rare (Fig. 9.2) and do not play a sig-
nificant role. Specimens of Tubiphytes occur as isolated
and upright growing (frame-builder) as well as encrusting
organisms. Algae, including codiacean, dasycladacean and

phylloid types, occur between the frame-builders but are
not abundant. Representatives of red algae are extremely
rare.  Pseudovermiporella is very abundant. The most abun-
dant organisms between the coralline sponges are single or
branched tubes, such as Koivaella Chuvashov, which are
usually encrusted by dark micritic crusts without internal
structure or by Pseudovermiporella forming aggregate-like
components (Fig. 8.7). Such aggregates or lumps seem to be
also abundant in other Permian reefs and were described,
e.g. by Wahlman (1985) as “Tubipytes boundstone” or by
Noé (2003) as a combination of Koivaella/Tubiphytes or
Tubiphytes/Foraminifera. Small foraminifers of different
taxonomic position and fusulinids are relatively rare
(Fig. 14.6F). Other organisms like gastropods, brachiopods,
echinoderms etc. also occur, but are minor elements in the

Quantitatively, frame-builders, including Archaeolitho-

porella, make up less than 50 % of the rock and the rest is
formed by bioclastic micritic sediment or cement. Spaces
between the frame-builders without the encrustation by
Archaeolithoporella, are usually filled by fine bioclastic
or micritic sediment. In the case of the encrustation of

Table 5: Occurrence of sphinctozoid and inozoid sponges, as well as
the problematic organism Lercaritubus problematicus, in Iran, com-
pared with some other Permian localities on the world. The data are
based on publications of Weidlich (1992) and Weidlich & Senowbari-
Daryan (1996) from Oman; Senowbari-Daryan & Ingavat-Helmcke
(1994) from Thailand; Senowbai-Daryan & Rigby (1988), Rigby &
Senowbari-Daryan (1996) from Tunisia; Girty (1908b), King (1943),
Senowbari-Daryan (1990), Rigby et al. (1998b) from Texas/New
Mexico; Deng (1981, 1982a,b), Fan & Zhang (1985), Rigby et al.
(1989a,b, 1994) from China. + – known; — – not known.

Genus/Species Iran  Oman Sicily China/Thailand  Tunisia  USA 


A. tabasensis 

+ –  – 


–  – 


+ –  – 


–  – 

B. minima 

+ –  – 


–  – 


+ +  + 


+  + 

G. beedei 

+ +  + 


+  + 


+ +  + 


+  + 

L. cylindrica 

+ +  + 


+  + 


+ –  – 


–  – 

S. permica 

+ –  – 


–  – 

S. biserialis 

+ –  – 


–  – 


+ +  + 


+  + 

S. ostiolata 

+ +  + 


+  + 

S. cylindrica 

+ –  – 


–  – 


? ?  – 


–  – 


? +  – 


–  – 


+ –  + 


–  + 

B. spinosa 

+ –  + 


–  – 


+ –  + 


+  – 

H. symmetrica 

+ –  + 


+  – 


+ +  + 


+  + 

M. kansasensis 

+ +  + 


–  + 

M. radiata 

+ –  – 


–  – 


+ –  + 


+  + 

P. recta grossa 

+ –  – 


–  – 


+ –  – 


–  – 

S. tabasensis 

+ –  – 


–  – 


+ +  + 


–  + 

L. problematicus 

+ +  + 


–  + 

background image


frame-builders by Archaeolithoporella the spaces between
these were originally large cavities that were filled later,
usually by silty sediment or sparry calcite cement
(Fig. 8.8). Some organisms are silicified but their preserva-
tion is relatively good.

Acknowledgments:  The investigations were carried out
within the frame of research project “Se 416/10” supported
by the “Deutsche Forschungsgemeinschaft” (German Re-
search Foundation) to B. Senowbari-Daryan. Our thanks
is expressed to the University of Esfahan for providing
field vehicles and logistic help. We thank Mrs. B. Leip-
ner-Marta and M.L. Neufert (both from Erlangen) for thin
section preparation and photograph work. Our special
thanks are addressed to Prof. Dr. J. Keith Rigby (Provo,
Utah) for the improvement of the first draft of the manu-
script and for his valuable suggestions and review. The
three reviewers (Jozef Michalík, Bratislava; Oliver
Weidlich, London; and Diego García-Bellido, Madrid),
especially the third one have made valuable suggestions
to improve the manuscript.
This paper was published with special financial support of
Board of GC Editors.


Akagi S. 1958: On some Permian Porifera from Japan. Jubilee Publ.

Comm. Prof. H. Fujimoto, Inst. Geol. Min., Tokyo Kyoiku
Daigaku, 66—73.

Boiko E.V., Belyaeva G.V. & Zhuravleva I.T. 1991: Phanerozoic

sphinctozoans from the Territory of USSR. Akad. Sci. USSR,
Siberian Department, Inst. Geol. Geophys., Akad. Sci. Tajiki-
stan, USSR, Inst. Geol. Tajikistan, Moscow, 1—223 (in Russian).

Cossmann M. 1909: Rectification de nomenclature. Rev. Crit. Paleo-

zool. 13, 67—68.

Deng Zh.-Q. 1981: Upper Permian sponges from Laibin of Guangxi.

Acta Paleont. Sin. 20, 5, 418—427.

Deng Zh.-Q. 1982a: Late Paleozoic and Mesozoic fossil sponges of

Xizang.  Ser. of the Sci. Exped. to the Qinghai-Xizang Plateau.
Palaeont. of Xizang IX, 189—194, Nanjing (in Chinese with
English abstract).

Deng Zh.-Q. 1982b: Paleozoic and Mesozoic sponges from south-

west China. In: Sichuan W. & Xizang E. (Eds.): Stratigraphy
and Palaeontology. Part 2. Sichuan Renmin Chuban She,
Chengdu,  245—258.

Endo R. 1951: Stratigraphical and paleontological studies of the Later

Paleozoic calcareous algae in Japan I. Trans. Proc. Paleont. Soc.
Jap., N. Ser. 4, 121—129.

Endo R. 1961: Stratigraphical and paleontological studies of the Later

Paleozoic calcareous algae in Japan, XVII. Fossil algae from the
Akiyoshi Limestone Group. Sci. Rep. Saitama Univ., Ser. B.,
Comm. Vol. (Biology and Earth Sci.) 119—141.

Fagerstrom J.A. & Weidlich O. 1999a: Origin of the upper Capitan-

Massive limestone (Permian), Guadalupe Mountain, New Mex-
ico-Texas: Is it a reef? GSA Bull. 11, 2, 159—176.

Fagerstrom J.A. & Weidlich O. 1999b: Strength and weaknesses of

the reef guild concept and quantitative data: Application to the
Upper Capitan-Massive Community (Permian), Guadalupe
Mountains, New Mexico-Texas. Facies 40, 131—156.

Fan J., Rigby J.K. & Zhang W. 1991: “Hydrozoa” from Middle and

Upper Permian reefs of South China. J. Paleontology 65, 44—48.

Fan J., Vang J.M. & Wu Y.Sh. 2002: Calcisponge and hydrozoans

from Permian reefs in western Guangxi (China). Acta Palaeont.
Sin. 41, 3, 334—348.

Fan J. & Zhang W. 1985: Sphinctozoans from Late Permian reefs of

Lichuan, West Hubei, China. Facies 13, 1—44.

Finks R.M. 1960: Late Paleozoic sponge faunas of the Texas region:

the siliceous sponges. Amer. Mus. Natur. Hist. Bull. 120, 1, 1—160.

Finks R.M. 1971: Sponge zonation in the West Texas Permian. Smith-

sonian Misc. Contr., Paleontology 3, 285—300.

Finks R.M., Reid R.E.H. & Rigby J.K. 2004: Treatise on invertebrate

Paleontology. In: Kaesler R.L. (Ed.): Treatise on invertebrate
Paleontology. Part E. Porifera. Vol. 3.   Geol. Soc. Amer. Univ.
Kansas, Boulder, Colorado and Lawrence, Kansas, 1—872.

Flügel E. 1980: Die Mikrofazies der Kalke in den Trogkofel-Schich-

ten der Karnischen Alpen. In: Flügel E. (Ed.): Die Trogkofel-
Stufe im Unterperm der Karnischen Alpen. Carinthia  II, 36
(Sonderheft), 51—99.

Flügel E. 2004: Microfacies of carbonate rocks. Springer,  Berlin—

New York—Heidelberg,  1—976.

Flügel E., Kochansky-Devidé V. & Ramovs A. 1984: A Middle Per-

mian Calcisponge—Algal—Cement Reef: Straza near Bled, Slove-
nia.  Facies 10, 179—256.

Flügel E., Senowbari-Daryan B. & Di Stefano P. 1990: Lercaritubus

problematicus nov. gen., nov. sp., a Lower Permian reef organism
from western Sicily. Boll. Soc. Paleont. Ital. 29, 3, 361—366.

Flügel H.W. 1973: Peronidella baloghi, a new inozoan from the

Upper Permian of the Bükk Mountains (Hungary). Acta Mineral.
Petrogr. 21, 49—53.

García-Bellido D.C., Senowbari-Daryan B. & Rigby J.K. 2004: Cys-

tothalamia vandegraaffi new species and other sphinctozoan
sponges from the Upper Carboniferous of Spain. J. Paleontolo-
gy 78, 6, 1037—1055.

Girty G.H. 1908a: On some new and old species of Carboniferous

fossils. Proc. U.S. Nat. Mus. 34, 1614, 281—303.

Girty G.H. 1908b: The Guadalupian Fauna. U.S. Geol. Surv., Prof.

Pap. 58, 1—651.

Gregorio D. de 1930: Sul Permiano de Sicilia (Fossili del calcare con

Fusulina di Palazzo Adriano). Ann. Géol. Paleontology 52, 1—70.

Haas O. 1909: Bericht über neue Aufsammlungen in den Zlambach-

Mergeln der Fischerwiese bei Altaussee. Beitr.  Paläont. Geol.
Österr.-Ungarns 22, 143—167.

Hayasaka I. 1918: Amblysiphonella from Japan and China. Sci. Rep.

Tohoko Univ. Sendei 5, 1—10.

Hinde G.T. 1893: A monograph of the British fossil sponges. Part III.

Sponges of Jurassic strata. Palaeont. Soc. 47, 189—254.

Kahler F. 1974: Iranische Fusuliniden. Jb. Geol. Bundesanst. 117,


Keupp H., Reitner J. & Salomon D. 1989: Kieselschwämme (Hexacti-

nellida und “Lithistida”) aus den Cipit-Kalken der Cassianer
Schichten (Karn, Südtirol). Berliner Geow. Abh., A 106, 221—241.

King R.H. 1933: A Pennsylvanian sponge fauna from Wise County,

Texas. Univ. Texas Bull. 3, 75—85.

King R.H. 1938: Pennsylvanian sponges of north-central Texas. J.

Paleontology 12, 5, 498—504.

King R.H. 1943: New Carboniferous and Permian sponges. State

Geol. Surv. Kansas Bull. 47, 1—36.

Kovács S. 1978: New sphinctozoan sponges from the North Hungar-

ian.  Neu. Jb. Geol. Paläont. Mh. 1978, 11, 685—697.

Laubenfels M.W. de 1955: Porifera. Treatise Invertebr. Paleont., E.

Geol. Soc. Amer. Univ. Kansas, Lawrence, 1—122.

Leven E.J. & Vaziri Moghaddam H. 2004: Carboniferous-Permian

stratigraphy and fusulinids of eastern Iran. The Permian in the
Bagh-e Vang section (Shirgesht area). Riv. Ital. Paleont. Stratigr.
110, 2, 441—465.

Mehl-Janussen D. 1999: Die frühe Evolution der Porifera. Münchner

Geowiss. Abh., A 37, 1—72.

Noé S. 2003: Spätstadium einer sterbenden Karbonatplatform: Schel-

background image

406                                                               SENOWBARI-DARYAN, RASHIDI and HAMEDANI

frand- und Außenschelf-Entwicklung der Tansill-Formation
(Permian Reef Complex, New Mexico, USA). Kölner Forum
Geol. Paläont. 11, 1—254.

Nutzubidze K.S. 1964: Liassic sponges of Dzirul Massiv. Acad. Sci.

GSSR, Trud. Geol. Inst., Ser. Geol. 14, 19, 5—35.

Ott E. 1974: Phragmocoelia n. g. (Sphinctozoa), ein segmentierter

Kalkschwamm mit neuem Füllgewebetyp aus der alpinen Trias.
Neu. Jb. Geol. Paläont. Mh. 1974, 712—723.

Parona C.F. 1933: Les spugne della fauna permiana di Palazzo Adri-

ano (Bacino del Sosio) in Sicilia. Mem. Soc. Geol. Ital. 1, 1—58.

Partoazar H. 1995: Permian deposits in Iran. Treatise on the geology

of Iran. Geol. Surv. Iran, Tehran 22, 1—340 (in Persian with
English summary).

Pickett J.W. & Rigby J.K. 1983: Sponges from the early Devonian Garra

Formation, New South Wales. J. Paleontology 57 4, 720—741.

Rigby J.K., Fan J. & Nairen H. 1995: Upper Permian silicified sponges

from central Guangxi and western Hubei, south China. J. Pale-
ontology 69 2, 232—250.

Rigby J.K., Fan J. & Zhang W. 1989a: Sphinctozoan sponges from the

Permian reefs of South China. J. Paleontology 63, 4, 404—439.

Rigby J.K., Fan J. & Zhang W. 1989b: Inozoan calcareous Porifera

from the Permian reefs in southern China. J. Paleontology 63,

Rigby J.K., Fan J., Zhang W., Vang Sh. & Zhang X. 1994: Sphincto-

zoan and inozoan sponges from the Permian reefs of South Chi-
na.  BYU Geol. Studies 40, 43—109.

Rigby J.K. & Mapes R.H. 2000: Some Pennsylvanian and Permian

sponges from southwestern Oklahoma and north-central Texas.
BYU Geol. Studies 45, 25—67.

Rigby J.K. & Mundy D.J.C. 2000: Lower Carboniferous sponges

from the Craven Reef Belt of North Yorkshire. Yorkshire Geol.
Soc. 2000, 119—128.

Rigby J.K. & Potter A.W. 1986: Ordovician Sphinctozoan sponges

from the Eastern Klamath Mountains, Northern California. J.
Paleontology, Suppl. 60, 4, 1—47.

Rigby J.K. & Senowbari-Daryan B. 1996: Upper Permian inozoid,

demospongid, and hexactinellid sponges from Djebel Tebaga,
Tunisia. Univ. Kansas, Paleont. Contr., New Ser. 7, 1—130.

Rigby J.K., Senowbari-Daryan B. & Hamedani A. 2005: First reported

occurrence of wewokellid sponges from the Permian of central
Iran. Facies (in press).

Rigby J.K., Senowbari-Daryan B. & Liu H. 1998b: Sponges of the

Permian Upper Capitan Limestone, Guadalupe Mountains, New
Mexico and Texas. BYU Geol. Studies 43, 19—117.

Rigby J.K., Wu X. & Fan J. 1998a: Triassic hexactinellid sponges

from patch reefs in north-central Sichuan, People’s Republic of
China. BYU Geol. Studies 43, 119—165.

Ruttner A., Nabavi M.H. & Hajian J. 1968: Geology of the Shirgesht

Area (Tabas area, East Iran). Geol. Surv. Iran, Rep. 4, 1—133.

Seilacher A. 1962: Die Sphinctozoa, eine Gruppe fossiler Kalk-

schwämme. Akad. Wiss. Lit., Math.-Naturwiss. Kl. 1961, 10,

Senowbari-Daryan B. 1990: Die systematische Stellung der thala-

miden Schwämme und ihre Bedeutung in der Erdgeschichte.
Münchner Geowiss. Abh., A 21, 1—326.

Senowbari-Daryan B. 1991: Nomenklatorische Notiz unter Berück-

sichtigung des Homonymiegesetzes. Paläont. Z. 65, 3—4, 405.

Senowbari-Daryan B. & Di Stefano P. 1988: Microfacies and

sphinctozoan assemblage of some Lower Permian breccias
from the Lercara Formation (Western Sicily). Riv. Ital. Pale-
ont. Stratigr. 94, 1, 3—34.

Senowbari-Daryan B. & García-Bellido D.C. 2002: “Sphinctozoa” or

chambered sponges (polyphyletic). In: Hooper J.N.A. & Van
Soest R.W.M. (Eds.): System Porifera. A Guide to the Classifica-
tion of Sponges. Vol. 2. Kluwer Academics Plenum Publishers,

New York, 1511—1538.

Senowbari-Daryan B. & Hamedani A. 1999: Thalamid sponges from

the Upper Triassic (Norian-Rhaetian) Nayband Formation near
Wali-Abad, SE Abadeh, Central Iran. Riv. Ital. Paleont. Stratigr.
105, 1, 79—100.

Senowbari-Daryan B. & Hamedani A. 2002: First report of the occur-

rence of Amblysiphonella (thalamid sponge) in the Permian of
Iran and description of A. iranica nov. sp. from central Iran.
Rev. Paléobiol. Gen

ève 21, 2, 795—801.

Senowbari-Daryan B. & Ingavat-Helmke R. 1994: Sponge assem-

blage of some Upper Permian reef limestones from Phrae prov-
ince (Northern Thailand). Geologija 36, 5—59.

Senowbari-Daryan B. & Rigby J.K. 1988: Upper Permian segmented

sponges from Djebel Tebaga, Tunisia. Facies 19, 171—250.

Senowbari-Daryan B. & Rigby J.K. 1996: First report of Lercaritubus

in North America, from the Permian Capitan Limestone, Guad-
alupe Mountains, New Mexico. J. Paleontology 70, 1, 22—26.

Senowbari-Daryan B., Zühlke R., Bechstädt T. & Flügel E. 1993:

Anisian (Middle Triassic) buildups of the Northern Dolomites
(Italy): The recovery of reef communities after the Permian—
Triassic crisis. Facies 28, 181—256.

Steinmann G. 1882: Pharetronen-Studien. Neu. Jb. Miner. Geol.

Paläont. II. 139—191.

Stöcklin J., Eftekhar-Nezhad J. & Hushmand-Zadeh A. 1965: Geolo-

gy of the Shotori Range (Tabas area, East Iran). Geol. Surv. Iran,


3, 1—69.

Termier H. & Termier G. 1974: Structure et évolution des spongiaires

hypercalcifiés du Paléozoique Supérieur. Mém. Inst. Géol. Univ.
Louvain 29, 57—109.

Termier H., Termier G. & Vachard D. 1977: Monographie Paléontol-

gogique des affleurements Permiens du Djebel Tebaga (Sud
Tunesien).  Palaeontographica, Abt., A 156, 1—3, 1—109.

Wahlman G.P. 1985: Lower Permian (Wolfcampian) Archaeolitho-

porella-Tubiphytes-sponge boundstones from the subsurface of
West Texas. In: Toomey D.F. & Nitecki M.H. (Eds.): Paleoalgolo-
gy.  Springer, 208—215.

Weidlich O. 1992: Rekonstruktion einer Karbonatplattform in Ober-

perm: Palökologie, Mikrofazies und Biostratigraphie von au-
tochthonen und allochthonen Karbonaten, Sultanat Oman.
Unpubl. Diss., Univ. Erlangen, 1—199.

Weidlich O. & Fagerstrom J.A. 1999: Influence of sea-level changes on

development, community structure, and quantitative composition
of the Upper Capitan-Massive (Permian), Guadalupe Mountains,
Texas and New Mexico. SEPM Spec. Publ. 65, 139—160.

Weidlich O. & Senowbari-Daryan B. 1996: Late Permian “Sphincto-

zoids” from reefal blocks of the Ba’id area, Oman Mountains. J.
Paleontology 70, 1, 27—46.

Wu X. 1990: Late Triassic Lychniscosa fauna in northwestern Si-

chuan.  Acta Palaeont. Sin. 29, 3, 349—363 (in Chinese, with
English summary).

Wu X. & Xiao R. 1989: Discovery of Late Triassic sponge fauna in

northwestern Sichuan. J. Kunming Inst. Technology 14, 1, 12—21
(in Chinese).

Wu Y.Sh. 1991: Organisms and communities of Permian reef of

Xiangbo, China. International Acad. Publ., Beijing, 1—192.

Zhang W. 1983: Study on the Sphinctozoans of Upper Permian

Changxing Formation from Lichuan area, West Hubei, China.
In: A collection of theses for master’s degree 1983. Inst. Geol.,
Acad. Sin., Beijing, 1—11.

Zhang W. 1987: A new genus Neoguadalupia with notes on connec-

tion of interrelated genera in Sebargasiidae, Sphinctozoan. Sci.
Geol. Sin. 3, 231—238.

Zittel K.A. 1878: Studien über fossile Spongien. III. Abteilung: Mo-

nactinellidae, Tetractinellidae und Calcispongiae. Kaiser. Bayer.
Acad. Wiss. II, Cl. 13: II Abt., S. 11—48.