background image

GEOLOGICA CARPATHICA, 50, 6, BRATISLAVA, DECEMBER 1999

477–487

Sr AND Nd ISOTOPE GEOCHEMISTRY OF HERCYNIAN GRANITIC

ROCKS FROM THE WESTERN CARPATHIANS — IMPLICATIONS

FOR GRANITE GENESIS AND CRUSTAL EVOLUTION

MILAN KOHÚT

1

, VIKTOR P. KOVACH

2

, ALEXANDER B. KOTOV

2

,

EKATHERINA B. SALNIKOVA

and VALERIY M. SAVATENKOV

2

1

Geological Survey of Slovakia, Mlynská dolina 1, 817 04 Bratislava, Slovak Republic; milan@gssr.sk

2

Institute of Precambrian Geology and Geochronology, Russian Academy of Sci., Makarova Emb. 2, 199034 St. Petersburg, Russia

(Manuscript received February 23, 1999; accepted in revised form September 28, 1999)

Abstract: 

Combined Sr-Nd isotopic study of the Hercynian granitoid rocks from the Western Carpathians has been

carried out on whole rock (WR) samples from typical representatives of each granitic body in the Carpathians. The
results presented here reveal the dominance of heterogeneous crustal sources for the majority of the studied granitic
rocks, which have a neodymium crustal index NCI = 0.4–1 (majority 0.6–0.8). Initial isotopic data 

87

Sr/

86

Sr

(350)

  =

0.7053–0.7078 (

ε

Sr

(350)

 = 16.7–52.6) and 

ε

Nd

(350)

 = –0.6  to –6.9 preclude a simple mantle and/or crustal origin for

most of the West-Carpathian granites and suggest more complex sources, such as an enriched source in the subconti-
nental lithosphere, or amphibolitic lower crust, with crustal-sedimentary addition. We cannot exclude, from the pre-
sented data, a hypothetical depleted mantle source, at least as heat flux during crustal anatexis processes. Apparent
crustal residence ages, indicated by Nd model age — t

(DM2st)

 = 1.1 ~ 1.6 Ga, are comparable with other segments of the

European Hercynian belt. Petrographically, these granites are representative of common crustal anatectic rocks with
magmatic muscovite, however, their isotopic signature reflects an I-type granitic character, usually related to subduc-
tion processes at active continental margins. Recent metamorphic, sedimentary and/or structural knowledge from the
Hercynian basement of the Western Carpathians suggests a continental collisional, rather than a volcanic arc setting.
The West-Carpathian granitic rocks were generated by partial melting of mainly crustal Proterozoic material during
subduction-collisional processes of the Hercynian orogeny.

Key words: 

Western Carpathians, granitoid rocks, Rb-Sr, Sm-Nd, isotope geochemistry, granite genesis, crustal

evolution.

Introduction

The isotopic composition of Sr and Nd are correlated and
have been widely used to study the origin of igneous rocks.
The values of radiogenic isotope ratios at the time of granite
magma formation, coupled with other geochemical data, may
indicate the nature of sources contributing to granite mag-
mas. Granitic plutons are an important constituent of the con-
tinental crust, making up to one half of the upper crust; bulk
continental crust has a tonalitic composition (Wedepohl
1995). The continental crust developed by repeated orogenic
and anorogenetic events, during which old crustal material
has been recycled and new material extracted from the man-
tle has been added to the continents. Magmas formed by
crustal anatexis will contain information on the history of the
crust and its composition at the time of formation, reflecting
their isotopic evolution (Sr, Nd). Numerous papers have been
published discussing the source of granite rocks using radio-
genic isotopes, for example McCulloch & Chappell (1982),
Ben Othman et al. (1984), Liew & Hofmann (1988), Pin &
Duthou (1990), Moreno-Ventas et al. (1995), Keay et al.
(1997). According to these authors granites are a) derived
from the melting of discrete crustal sources, b) produced by
crust-mantle mixing, or reflect a three component mixture
such as c) melting of old greenstone (mafic crustal compo-
nent) together with metapelites and addition of young man-

tle-derived magma, and/or d) melting of upper crustal sedi-
ments together with lower crustal granulites and mixed/min-
gled with young mantle magma.

Though the genetic implications from Sm-Nd study of the

Carpathian granites were published by Kohút et al. (1995),
the primary data of this research have never been presented
in written form. The relation of mafic enclaves (MME) to the
Cretaceous Rochovce Granite with help of Sm/Nd isotopic
characteristics has been discussed by Hraško et al. (1998).
The main purpose of this paper is to present Sr-Nd isotopic
results from the West-Carpathian granite rocks, constrain
their sources and petrogenesis as well as discuss the implica-
tions for crustal evolution.

Geological setting

Like the Pyrenees, Alps and/or Himalayas, the Carpathian

mountain chain is a typical Alpine collisional fold belt. Their
pre-Mesozoic complexes, however, belong to the Hercynian
basement within the Alpine-Carpathian orogenic belt. Dur-
ing the Alpine tectonism, the Carpathian part of the Hercyn-
ian belt was disrupted and sliced into blocks, which were in-
corporated into the Alpine (nappe and/or terrane) complexes
and subsequently variously uplifted. This polyorogenic his-
tory makes the reconstruction of Hercynian structures rather

background image

478                                                                                              KOHÚT et al.

difficult, but provides excellent exposure of various levels of
the Hercynian crust. The Western Carpathians form a direct
eastern continuation of the Eastern Alps. The pre-Alpine
crystalline basement crops out mainly in the Central Western
Carpathians (CWC), the heart of the Western Carpathians,
consisting of three principal crustal-scale superunits: the Tat-
ric, Veporic and Gemeric and several cover-nappe systems
— the Fatric, Hronic and Silicic (generally from N to S), see
Plašienka (1995), Plašienka et al. (1997). The Hercynian
granitoid rocks occur in all three superunits of the CWC in
various positions (Fig. 1). In the Tatric Superunit, these rocks
form backbones of the so-called core mountains. A grand
composite granodiorite-tonalite massif, strongly affected by
the Alpine tectonics, dominates the Veporic Superunit. A
large hidden granitoid body penetrating the overlying Early
Paleozoic rocks in the form of apophyses is observed in the
Gemeric Superunit. The core mountains of the Tatric Supe-
runit are composed of pre-Mesozoic metamorphic rocks and
granitoids, both overlain by Mesozoic cover sediments, and/
or nappe structures. Basement rocks were only weakly af-
fected by Alpine metamorphism (Krist et al. 1992). The Ve-
poric crystalline basement consists of high- to low-grade
metamorphic rocks, various types of granitoids including hy-
brid ones, and their Upper Paleozoic and Mesozoic cover.
Due to complex Hercynian and Alpine tectonic phenomena
this unit has a very complicated — imbricate structure at
present. Penetrative brittle-ductile deformation is weakened
from SE to NW. The basement of the Gemeric Superunit is
composed of Early Paleozoic (Silurian) to Late Carbonifer-
ous, mostly low-grade flyshoid metasediments and metavol-
canics with remnants of an ophiolite complex. This volcano-

sedimentary sequence was intruded by small granite apophy-
ses from a huge underlying postorogenic body. (A more de-
tailed geological map of the Western Carpathians can be find
at address — http://www.gssr.sk).

Granitoid magmatism dominated the Hercynian orogen in

the Western Carpathians over the time interval of 100 million
years (360–250 Ma). In response to varying geotectonic set-
tings different genetic types of granite formed: lower Car-
boniferous crustal thickening, an upper Carboniferous ther-
mal event, and Permian transtension resulted in S-, I- and
A-type granite forming events respectively (Petrík & Kohút
1997). This review lists all relevant geochronological data
and discusses all the important geochemical and petrological
aspects of the West-Carpathian granitic rocks. Available iso-
tope data (U-Pb, Rb-Sr and Ar-Ar) indicate main phase of
granite magmatism between 360 and 340 Ma; therefore we
adopted the age 350 Ma for calculation of initial isotopic
compositions. The HT/MP metamorphism with concomitant
widespread granite magmatism was responsible for resetting
(Rb-Sr) of the potential source rocks during this period.

Analytical methods

Geochemical analyses were done at the University of Otta-

wa using the XRF technique and at the Dionýz Štúr Institute
of Geology — Bratislava using classical wet technique. REE
were analysed at the University of Newfoundland, St. John’s
and by MEGA Inc. Stráž pod Ralskem both using INAA. The
measurements were checked against international standards.
The analyses of isotopic composition were performed at the

Fig. 1.

 Simplified tectonic-geological sketch of the Western Carpathians (Slovak part), with location of investigated samples. 1 — Pre-

Alpine crystalline basement, Tatric Superunit, 2 — Mesozoic sedimentary cover and nappe structures of the Tatric Superunit, 3 — Ve-
poric Superunit, 4 — Gemeric Superunit, 5 — Klippen Belt, 6 — Flysch zone, 7 — Neogene to Quarternary Central and East Slovak neo-
vulcanites, 8 — Neogene to Quarternary basins.

background image

Sr AND Nd ISOTOPE GEOCHEMISTRY                                                                       479

Institute of Precambrian Geology and Geochronology, Russian
Academy of Sciences, St. Petersburg and partly (Rb/Sr) in the
laboratories of BGR Hannover on the mass spectrometers
Finnigan MAT 261. The powdered rocks samples (WR) for
Sm-Nd studies were analysed following the method of Rich-
ards et al. (1976), Rb-Sr analyses were done according to the
method of Wendt (1986). Pulverized WR samples were totally
spiked with 

149

Sm-

146

Nd mixed solution (respectively 

85

Rb-

84

Sr), and dissolved in a mixture of HF+HNO

3

+HClO

4

. Sepa-

ration of Sm and Nd (Rb-Sr) were done using conventional
cation-exchange chromatography and then extraction chroma-
tography on HDEHP covered teflon powder. Total blanks dur-
ing the measurements were 0.1–0.2 ng for Sm, 0.1–0.5 ng for
Nd and 0.03–0.07 ng for Rb, 0.5–0.8 ng for Sr. The accuracy
of the measurements of Sm and Nd contents was ±0.5 %,

147

Sm/

144

Nd — ±0.5 %, 

143

Nd/

144

Nd — ± 0.005 % (2

σ

), 

87

Rb/

86

Sr — ±0.5 % and 

87

Sr/

86

Sr — 0.005 % (2

σ

). During these

works the weighted average (n = 31) of the La Jolla Nd-stan-
dard yielded 0.511845 ± 4 (2

σ

) for 

143

Nd/

144

Nd, normalized to

146

Nd/

144

Nd = 0.7219 for Rb-Sr measurements were used in-

ternal standards NBS-987 and NBS-607 respectively. The

ε

Nd(0) values were calculated with 

147

Sm/

144

Nd = 0.1967 and

143

Nd/

144

Nd = 0.512638 for the chondritic uniform reservoir

(CHUR) according to Jacobsen & Wasserburg (1980). A linear
model with parameters 

147

Sm/

144

Nd = 0.2136 and 

143

Nd/

144

Nd

= 0.513151 was used for depleted mantle (DM) — Goldstein
& Jacobsen (1988). The two-stages of apparent crustal resi-
dence ages were calculated with correction for crustal compo-
nent 

147

Sm/

144

Nd

(CC)

 = 0.12 and 

143

Nd/

144

Nd

(DM)

 = 0.513151,

147

Sm/

144

Nd

(DM)

 = 0.219 according to the model of Liew &

Hofmann (1988). The 

ε

Sr(0) values were calculated with 

87

Sr/

86

Sr = 0.7045 for present bulk earth composition (DePaolo &

Wasserburg 1976). The values NCI (Neodymium Crustal In-
dex) are computed according to the model of DePaolo et al.
(1992). More details of the analytical technique are described
in Neymark et al. (1993) and Kohút et al. (1996).

Results

The basic chemical composition (major + trace element and

REE) of the studied samples is given in Table 1. Since our re-
search was limited, we selected more or less representative
samples from each West-Carpathian granite massif. The broad
sample set, covering all principle granite types, including hy-
brid ones from the Veporic Superunit, is complemented by one
sample of gabbro (Sm-Nd data, Kotov in Hraško 1993), used
for genetic implication. The dominance of common granodior-
ite-granite types is shown in Fig. 2. The chondrite normalized
patterns in this Fig. 2, give a good reflection of all the fraction-
ation/assimilation processes, which operated during the origin
of these granites. Generally, the majority of Carpathian grani-
toid plutons are metaluminous to peraluminous (subalumi-
nous) and are composed of several rock types ranging from to-
nalite to leucocratic granite. The silica contents of granitic
rocks vary in a range of ca. 60–75 wt. %, documenting the in-
crease of alkalinity from the more basic to the most acid ones.
The prevalence of Na

2

O over K

2

O is a common feature (K

2

O/

Na

2

O = 0.25–1.15), except in the porphyritic granite of „Pra-

šivá“ type in which this ratio is equal. The CWC granitoids
represent low- to high-potassium calc-alkaline (throndhjemite
–monzonite) series of magmatic rocks, with ASI = 0.7–1.4.
Biotite is the dominant Fe-Mg mafic mineral, whereas horn-
blende occurs only rarely in the dioritic enclaves. Accessory
minerals (magnetite + allanite and monazite + ilmenite) show
dichotomy and/or antagonism in some plutons, which permits
the distinction between the two principal granite groups
(Petrík & Broska 1994). The occurrence of the mafic micro-
granular enclaves (MME) in the magnetite-bearing granites
and presence of the host (metamorphic) rocks xenolithes in the
magnetite-free granites support this division in the Western
Carpathians.

The Sm-Nd isotopic data together with Rb-Sr isotopic

analyses are listed in Table 2. Measured ratios in the rocks
are corrected for decay since the time of crystallization (t =
350 Ma). The 

ε

 values relative to CHUR and UR were recal-

culated in a similar way (see above).

The situation in the Rb-Sr isotopic system is documented

by Figs. 3 and 4. Although the samples come from various
plutons, a linear correlation of studied samples with the ex-
ception of two leucocratic samples (ZK-4 and VVM-129 is
clearly observed in the Nicolaysen plot). The linear array of
these samples is in good concordance with the reference line
for an age of 365 Ma. This leads to an assumption that meta-
morphic/magmatic processes operated with P-T conditions
over stability for this isotopic system, throughout a wide area
during the early Carboniferous period. The initial strontium
ratios (I

sr

) in granitoid rocks of the Tatric and Veporic supe-

runits are low (0.705–0.708) suggesting a mixed lower crust-
al and mantle component and/or Rb-poor crustal source
(Fig. 4). This ratio is higher only in the Kralička leucogran-
ites (our sample ZK-4), which show some genetic relations
with surrounding metamorphic rocks, migmatites and gneiss-
es (Siegl 1976; Dupej & Siegl 1984). The I

Sr

 of this leucog-

ranite (0.7116 — Bagdasaryan et al. 1985) is comparable
with that of gneisses from the Malé Karpaty Mts. and Tatra
Mts. (0.710–0.711 — Burchart 1968; Bagdasaryan et al.
1983). Generally the two principal granitoid groups, S-type

Fig. 2.

 Chondrite-normalized REE plots of the studied samples from

the West-Carpathian granite rocks. Chondrite composition accord-
ing to Boynton (1984). Symbols: circle — tonalites, box — grano-
diorites, triangle — granites, diamond — leucogranites, cross —
gabbro. N — numbers of samples according to Table 1.

Ro

ck

/C

ho

nd

rit

e

15

20

21

9

16

2

10

N

19

13

4

5

1

N

15
20

21

16

7

4

3

5

6

14

17

13

19

9

background image

480                                                                                              KOHÚT et al.

Table 1: 

Chemical composition (major + trace elements and REE) of the studied Carpathian granite samples. Explanation: bT — biotite tonalite,

mbGD — muscovite-biotite granodiorite, mG — muscovite granite, Gabb — gabbro, etc.

Number

1

2

3

4

5

6

7

8

9

10

Sample

VF-43

VF-639

VF-356

VF-700

VF-298

VK-139

BGPI-1

T-87

MM-29

Z-164

Type

mbG

bGD

bT

mG

mbG

mbGD

mbG

bGD

mbG

bmG

SiO

2

72.66

66.33

68.76

73.94

72.74

72.51

72.38

70.01

72.47

74.19

TiO

2

0.21

0.58

0.51

0.16

0.16

0.41

0.17

0.37

0.18

0.19

Al

2

O

3

14.64

15.70

15.59

13.27

15.12

14.31

14.86

15.61

14.55

14.24

Fe

2

O

3

0.47

1.62

0.81

0.94

0.33

1.00

0.59

1.31

0.37

0.70

FeO

1.43

1.93

2.33

1.25

0.72

1.53

1.60

1.41

1.50

1.04

MnO

0.03

0.05

0.04

0.02

0.02

0.04

0.05

0.04

0.07

0.02

MgO

0.61

1.21

1.22

0.15

0.37

0.81

0.67

0.95

0.60

0.39

CaO

1.42

2.89

2.83

0.69

1.44

1.96

2.88

2.29

2.09

1.66

Na

2

O

3.74

5.01

4.04

4.39

4.24

3.23

4.51

3.22

4.14

4.10

K

2

O

3.52

2.94

2.24

3.98

3.83

3.19

1.11

2.88

2.57

2.47

P

2

O

5

0.13

0.24

0.21

0.21

0.22

0.09

0.17

0.31

0.12

0.08

H2O+

0.75

1.24

0.94

0.76

0.83

0.64

0.82

1.60

0.68

0.51

H2O-

0.18

0.13

0.14

0.08

0.06

0.22

0.26

0.22

0.29

0.19

Total

99.79

99.87

99.66

99.84

100.08

99.94

100.07

100.22

99.63

99.78

Sr

259

365

563

103

146

285

284

482

327

305

Rb

110

91

91

177

108

99

61

92

56

80

Ba

864

641

826

405

534

1550

145

575

957

1200

Zr

112

203

185

40

52

316

86

156

128

134

Y

12.36

11.50

6.98

6.36

11.10

16.00

4.69

11.62

15.23

19.00

Nb

8.79

8.34

8.56

6.00

4.85

7.98

9.06

7.41

5.30

9.00

Ta

0.79

0.44

0.62

0.33

0.46

0.63

0.83

0.84

0.29

0.26

Hf

2.96

4.62

4.30

1.21

1.88

3.38

2.27

3.92

3.53

3.30

Th

6.40

8.90

6.26

2.95

6.52

15.40

8.16

8.73

12.80

10.30

U

2.50

2.20

2.10

3.80

3.70

1.70

2.42

2.51

10.30

3.20

La

20.79

31.20

24.56

5.36

11.82

24.20

22.85

25.52

34.56

31.08

Ce

42.99

66.34

51.11

11.04

26.26

54.50

47.47

49.94

70.83

64.22

Nd

19.73

29.52

23.07

4.84

12.31

21.00

20.18

21.15

29.32

29.10

Sm

4.20

5.41

4.17

1.27

2.80

4.00

3.78

3.80

5.51

5.04

Eu

0.76

1.09

1.19

0.42

0.56

0.82

0.84

1.10

1.24

0.83

Gd

3.32

3.85

2.98

1.22

2.87

2.62

2.63

2.84

4.13

4.12

Tb

0.47

0.49

0.35

0.21

0.38

0.37

0.30

0.40

0.55

0.54

Tm

0.16

0.15

0.08

0.08

0.13

0.12

0.06

0.15

0.26

0.18

Yb

0.94

0.95

0.51

0.51

0.68

0.67

0.31

0.95

1.76

1.04

Lu

0.13

0.13

0.08

0.07

0.09

0.11

0.05

0.14

0.27

0.16

Number

11

12

13

14

15

16

17

18

19

20

21

Sample

MF-4a

NT-401

ZK-4

TL-117

VG-46

VG-47

V-7312

V-9738

VVM-129

CH-3/72

KV-3/622

Type

mbGD

bGD

mG

mbGD

bT

mbGD

bmG

mbG

bmG

bT

Gabb

SiO

2

71.40

69.40

73.31

71.24

68.87

68.95

73.01

71.02

76.09

61.90

48.78

TiO

2

0.27

0.49

0.08

0.25

0.46

0.46

0.21

0.32

0.11

0.91

0.78

Al

2

O

3

14.80

15.16

14.07

14.56

15.64

15.06

14.18

14.45

12.75

16.70

11.22

Fe

2

O

3

0.40

1.22

0.73

1.24

1.36

1.17

0.56

0.87

0.41

2.69

5.16

FeO

1.50

1.50

1.35

1.56

2.21

2.13

0.65

1.82

0.98

5.39

6.12

MnO

0.03

0.05

0.06

0.04

0.09

0.04

0.02

0.03

0.03

0.07

0.16

MgO

0.59

1.61

0.55

0.77

1.58

1.10

0.44

1.01

0.13

1.94

15.21

CaO

1.90

1.96

1.10

2.26

2.37

1.79

1.29

1.97

0.49

2.36

7.44

Na

2

O

4.15

3.48

4.00

4.48

2.35

3.66

3.60

3.24

2.99

2.16

1.74

K

2

O

3.49

3.45

3.70

1.87

2.72

3.80

4.52

3.92

4.76

3.06

2.76

P

2

O

5

0.08

0.23

0.16

0.21

0.18

0.22

0.14

0.17

0.18

0.23

0.34

H2O+

1.10

1.14

1.32

1.10

1.56

1.31

1.02

0.75

0.78

1.96

0.19

H2O-

0.14

0.10

0.04

0.18

0.22

0.20

0.16

0.13

0.11

0.16

0.25

Total

99.85

99.79

100.47

99.76

99.61

99.89

99.80

99.70

99.81

99.53

100.15

Sr

  473

600

122

  449

  344

  210

  120

  320

      21

    464

      638

Rb

    65

125

158

    88

    89

  131

  240

    72

    448

    102

      139

Ba

1030

730

316

  880

  871

  851

  713

  956

      60

  1040

      635

Zr

  124

129

  31

  159

  179

  215

    96

  150

      66

    268

      123

Y

    10.29

    8.75

14.99

7.00

157.59

44.20

24.00

12.00

17.73

40.50

18.00

Nb

      5.19

  12.50

9.19

10.00

17.06

14.35

5.00

7.00

19.65

12.25

4.80

Ta

      0.37

    0.98

1.24

0.29

0.66

0.80

1.10

0.50

5.46

0.59

0.50

Hf

      3.12

    4.46

0.91

4.10

4.44

5.32

3.80

6.80

2.08

4.83

5.10

Th

      7.20

  11.40

5.50

6.30

52.00

14.00

16.90

22.50

9.55

12.05

8.80

U

      2.80

    3.80

3.40

2.60

8.00

3.20

4.80

1.70

6.40

4.30

4.00

La

    26.87

  30.47

6.45

26.67

78.84

31.46

28.52

30.48

7.67

57.20

55.58

Ce

    55.63

  60.26

13.40

54.56

175.60

71.73

58.90

58.14

17.99

120.00

109.70

Nd

    24.59

  27.37

5.81

25.67

84.29

33.97

24.00

29.12

9.51

48.61

45.84

Sm

      4.72

    4.51

1.82

3.91

26.57

8.10

5.23

5.13

2.68

10.20

9.90

Eu

      0.96

    1.01

0.45

0.95

1.37

1.06

0.89

1.13

0.13

1.20

2.05

Gd

      3.41

    3.36

2.05

2.89

32.46

8.22

3.60

3.26

2.20

7.42

4.69

Tb

      0.44

    0.40

0.43

0.36

5.26

1.40

0.71

0.43

0.48

1.27

0.68

Tm

      0.14

    0.16

0.24

0.13

1.81

0.61

0.27

0.17

0.24

0.52

0.27

Yb

      0.87

    1.04

1.65

0.71

9.94

3.74

1.60

0.99

1.34

3.25

1.40

Lu

      0.13

    0.15

0.24

0.12

1.46

0.51

0.25

0.14

0.18

0.41

0.19

background image

Sr AND Nd ISOTOPE GEOCHEMISTRY                                                                       481

Table 2:

 Radiogenic isotope data and calculated parameters of the investigated samples from the West-Carpathian granite rocks.

Sample

Rb

Sr

1/Sr

Rb/Sr

87

Rb/

86

Sr

87

Sr/

86

Sr(2

σ

)

ε

Sr(0)

87

Sr/

86

Sr

(350)

ε

Sr(350)

VF-43

110

259

0.0039

0.42

1.3838

0.71359 ± 21

129.03

0.706695

36.95

VF-639

91

365

0.0027

0.25

0.5255

0.70882 ± 20

61.32

0.706202

29.94

VF-356

91

563

0.0018

0.16

0.4330

0.70824 ± 21

53.09

0.706083

28.25

VF-700

103

177

0.0056

0.58

1.6920

0.71521 ± 16

152.02

0.706780

38.15

VF-298

108

146

0.0068

0.74

3.0970

0.72220 ± 20

251.24

0.706770

38.01

VK-139

99

285

0.0035

0.35

0.9891

0.71240 ± 34

112.14

0.707472

47.98

BGPI-1

61

284

0.0035

0.21

1.6198

0.71492 ± 22

147.91

0.706850

39.15

T-87

92

482

0.0021

0.19

0.3500

0.70768 ± 28

45.14

0.705936

26.17

MM-29

56

327

0.0031

0.17

1.7590

0.71496 ± 24

148.47

0.706196

29.86

Z-164

80

305

0.0033

0.26

1.5696

0.71403 ± 16

135.27

0.706210

30.05

MF-4a

65

473

0.0021

0.14

0.4390

0.70848 ± 18

56.49

0.706293

31.24

NT-401

125

600

0.0017

0.21

0.5644

0.71010 ± 30

79.49

0.707288

45.37

ZK-4

158

122

0.0082

1.30

3.4260

0.73700 ± 28

461.32

0.719930

224.93

TL-117

88

449

0.0022

0.20

0.6092

0.70920 ± 20

66.71

0.706165

29.42

VG-46

89

344

0.0029

0.26

0.5480

0.70800 ± 40

49.68

0.705270

16.71

VG-47

131

210

0.0048

0.62

1.4660

0.71510 ± 30

150.46

0.707796

52.58

V-7312

240

120

0.0083

2.00

0.9727

0.71123 ± 28

95.53

0.706384

32.53

V-9738

72

320

0.0031

0.23

0.7440

0.71005 ± 24

78.78

0.706343

31.95

VVM-129

448

21

0.0476

21.33

17.4520

0.87094 ± 36

2362.5

0.783988

1134.71

CH-3/72

102

464

0.0022

0.22

1.0252

0.71110 ± 22

93.68

0.705992

26.97

KV-3/622

139

638

0.0016

0.22

0.1965

0.70330 ± 20

-17.03

0.702321

-25.17

Sample

Sm

Nd

Sm/Nd

147

Sm/

144

Nd

143

Nd/

144

Nd(2

σ

)

ε

Nd(0)

143

Nd/

144

Nd

(350)

ε

Nd(350)

t

(DM)

t

(DM2st)

NCI

VF-43

3.05

15.93

0.19

0.11602

0.512391 ±  5

-4.82

0.512125

-1.21

1186

1155

0.58

VF-639

4.72

25.19

0.19

0.11364

0.512347 ±  7

-5.68

0.512087

-1.97

1225

1214

0.66

VF-356

4.73

23.44

0.20

0.12241

0.512346 ±  6

-5.70

0.512065

-2.38

1344

1247

0.66

VF-700

2.07

8.39

0.25

0.14990

0.512330 ±13

-6.01

0.511986

-3.92

1958

1368

0.69

VF-298

3.25

15.45

0.21

0.12768

0.512306 ±11

-6.48

0.512013

-3.39

1496

1327

0.73

VK-139

5.66

30.80

0.18

0.11135

0.512302 ±  6

-6.55

0.512047

-2.74

1264

1275

0.74

BGPI-1

3.52

18.50

0.19

0.11551

0.512235 ±  9

-7.86

0.511970

-4.24

1421

1393

0.86

T-87

4.82

27.70

0.17

0.10548

0.512397 ±  7

-4.70

0.512155

-0.62

1063

1109

0.57

MM-29

5.72

30.60

0.19

0.11346

0.512278 ±11

-7.02

0.512018

-3.30

1327

1319

0.78

Z-164

5.77

31.99

0.18

0.10947

0.512298 ±10

-6.63

0.512047

-2.74

1247

1275

0.75

MF-4a

4.19

22.30

0.19

0.11362

0.512307 ±11

-6.46

0.512047

-2.75

1285

1276

0.73

NT-401

4.19

22.66

0.18

0.11216

0.512396 ±  9

-4.72

0.512139

-0.94

1134

1134

0.57

ZK-4

3.57

15.40

0.23

0.14044

0.512156 ±  8

-9.40

0.511834

-6.89

2066

1601

1.00

TL-117

3.75

21.50

0.17

0.10597

0.512343 ±  4

-5.75

0.512100

-1.70

1144

1194

0.67

VG-46

25.50

82.10

0.31

0.18865

0.512516 ±  5

-2.38

0.512084

-2.02

3843

1219

0.36

VG-47

7.96

33.91

0.23

0.14237

0.512354 ±11

-5.54

0.512028

-3.11

1701

1305

0.65

V-7312

5.00

22.50

0.22

0.13498

0.512333 ±14

-5.95

0.512024

-3.19

1583

1311

0.68

V-9738

5.04

28.50

0.18

0.10717

0.512332 ±12

-5.97

0.512086

-1.97

1172

1215

0.69

VVM-129

2.58

8.93

0.29

0.17537

0.512364 ±  9

-5.34

0.511962

-4.40

3116

1405

0.63

CH-3/72

11.83

52.04

0.23

0.13787

0.512343 ±  9

-5.68

0.512031

-3.05

1615

1299

0.66

KV-3/622

11.39

65.68

0.17

0.10515

0.512715 ±  6

1.50

0.512474

5.60

613

620

0.00

and I-type are distinguished on the basis of their I

Sr

 values,

according to Krá  (1992, 1994). The S-type granitoids have
this initial ratio higher than 0.707, in contrast to the I-type
where it does not exceed 0.706, with the exceptions of the
Tatra Mts. and Ve ká Fatra Mts. (Petrík & Kohút 1997).
Granitoids from the Gemeric Superunit (VVM-129) have ex-
tremely high I

Sr

 (Kovach et al. 1986),

 

suggesting a pure (su-

pra) crustal source. Since, the projection points in Fig. 4 plot
over the mantle/basalt limit — 0.705, there is no isotopic
proof for a direct input of juvenile mantle-derived magmas
which could possibly have triggered anatexis and subsequent
differentiation processes. The observed gabbroic rocks with-
in the migmatite and/or anatectic granite rocks in the Branis-
ko Mts., would indicate some genetic relations and thus they

Fig. 3.

 Whole rock Rb/Sr isotope plot. Insert — eighteen investigated

samples are lying around reference line with age t = 365 Ma in the
Nicolaysen plot. Symbols according to position of samples within tec-
tonic unit: T — Tatric, V — Veporic, G — Gemeric, Gab — gabbro.

Fig. 4.

 Diagram I

sr

 versus Rb/Sr documenting nearly balanced

and quasi-homogenized isotope conditions during genesis of the
Hercynian granites in the Western Carpathians. Symbols as in
Fig. 3; Kr = ZK-4, GG = VVM-129, Gab = KV-3/622.

0.700

0.710

0.720

0.730

0.740

0.750

0.760

0.770

0.780

0.790

0.0

5.0

10.0

15.0

20.0

25.0

Rb/Sr

Kr

GG

87

Sr

/86

Sr

(350)

0.700

0.702

0.704

0.706

0.708

0.710

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gab

mantle limit

Fractionation

Assimilation

t = 350 Ma

0.700

0.720

0.740

0.760

0.780

0.800

0.820

0.840

0.860

0.880

0

5

10

15

20

87

Rb/

86

Sr

87

Sr/

86

Sr

T

V

G

Gab

GG

Kr

0.700

0.705

0.710

0.715

0.720

0.725

0

1

2

3

t = 365 Ma

background image

482                                                                                              KOHÚT et al.

Fig. 5.

 

143

Nd/

144

Nd versus 

147

Sm/

144

Nd correlation diagram for the

West-Carpathian granite rocks. As can be observed, no isochron
dependence reflecting lack of the regional scale homogenization.
Symbols as in Fig. 3.

Fig. 6.

 Initial Nd isotopic ratio at 350 Ma versus Sm/Nd ratio dia-

gram. The lack of a linear array rule out simple two-component
source mixing and reflect rather heterogeneous sources and/or
open system during genesis of the Carpathian granites.

Fig. 7.

 Initial Nd and Sr isotopic compositions (in relation to

CHUR & UR 

ε

 values) of the West-Carpathian granite rocks. Due

to extremely high content of radiogenic 

87

Sr of Gemeric granites

the projection point falls beyond the diagram. I–IV quadrants
scheduled on Faure (1986). I- S-type granite fields are modified
from McCulloch & Chappell (1982).

could have been a potential source of heat. The projection
points of the samples (Fig. 4) are at a slight angle, which
may be interpreted as incomplete mixing between the two
end members, but we can not exclude a slight country rocks
assimilation for part of the granodiorites-granites.

In the Sm-Nd (WR) system no isochron relationship was

observed indicating a lack of the regional scale homogeni-
zation, this is common for anatectic granite rocks (Kohút et
al. 1995). This relative isotopic heterogeneity (Fig. 5) may
have been caused by a) melting of a priori isotopically het-
erogeneous protoliths, b) a limited hybridization of two
crustal anatectic magmas, and/or c) limited contamination
by country-rocks. The isotopic variations within the Car-
pathian granites reflect rather open system processes (mix-
ing of magmas from heterogeneous sources, and/or crustal
contamination). On the Sm-Nd diagram a 350 Ma (Fig. 5)
reference line is shown and the dashed line on this plot rep-
resents an errorchron from six tonalite–granite samples,
which is consistent with initial 

ε

Nd

(CHUR)

 = –1.9 and the

age 508 Ma. However, Sm-Nd isotopic data are less suscep-
tible to alteration by crustal processes such as metamor-
phism than Rb-Sr data, the situation in Fig. 6 is rather am-
biguous. The lack of a linear array shows that simple
two-component source mixing cannot explain the variations
in the Sm and Nd concentrations and isotopic compositions
within the West-Carpathian granite samples, albeit our lim-
ited research is deficient from end members. The 

ε

Nd

(0)

values (Table 2) varying from –2.3 to –9.4 are comparable
with data from the Hercynian fold belt of central Europe
(Liew & Hofmann 1988), Massif Central (Pin & Duthou
1990), Bohemian Massif (Janoušek et al. 1995) and Tauern
Window (Finger et al. 1992, 1993). Most of the West-Car-
pathian granitoid samples create a well defined field, in

ε

Sr

(350)

 vs. 

ε

Nd

(350)

 plot (Fig. 7), falling more or less on the

mixing line between crustal and mantle sources and  situat-
ed in the I-type granitoid domain (McCulloch & Chappell
1982). In contrast, the isotopic characteristics of the Kralič-
ka and the Gemer granites are comparable with the purely
crustal (sedimentary) granites of SE Australia. One sample
of the gabbro from the Veporic Superunit, falling on the
mantle array in II quadrant, shows an obviously mantle ori-
gin. Although all the granite samples lie in quadrant IV, is
their slight Sm enrichment and affinity to quadrant I is
noteworthy. The magma source with both positive value en-
richment parameters (f

Sm

 > 0 and f

Rb

 > 0) indicating a posi-

tion within quadrant I, is untypical for ordinary felsic igne-
ous rocks (Faure 1986), but common for old mafic lower
crust — amphibolite/greenstone composition (Keay et al.
1997; Poller  et al. 1998). The apparent crustal residence ages,
indicated by Nd model age — t

(DM2st)

 = 1.6 ~ 1.1 Ga, mostly

1.4–1.1 Ga are comparable with others from the Hercynian
belt of Europe. For example, t

DM2st

 in the Bohemian Massif

varies between 1.7 ~ 1.1 Ga (Liew & Hofmann 1988; Jan-
oušek et al. 1995), Massif Central 1.8 ~ 0.9 Ga (Pin & Duthou
1990; Shaw et al. 1993). Table 2 also listed single-stage model
ages t

(DM)

 that would indicate extremely high crustal residence

(3.8–2.0 Ga) for part of the felsic rocks. The crustal evolution
in the Western Carpathians is better constrained by a two-stage
evolution model, as is recommended by Liew & Hofmann
(1988). Graphic expression of Nd evolution is given by Fig. 8.
The highest apparent age was found in the leucocratic sample
ZK-4 (1.6 Ga), which has the highest 

ε

Nd

(0) value as well. The

gabbro model age is 620 Ma, that is in accord with the evolu-
tion of a hypothetical mantle reservoir in the Carpathian realm
during the Pan-African orogeny (700–500 Ma). The impor-

-15

-10

-5

0

5

10

-50

0

50

100

150

200

250

UR

 (

ε

Sr)

1135

t = 350 Ma

Gab

Kr

GG

I-type

S-type

CHUR

 (

ε

Nd

)

I

II

III IV

0.5117

0.5118

0.5119

0.5120

0.5121

0.5122

0.5123

0.5124

0.5125

0.5126

0.5127

0.5128

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

147

Sm/

144

Nd

143

Nd/

144

Nd

T

V

G

Gab

t = 350 Ma

t = 500 Ma

Kr

Gab

GG

0.5118

0.5119

0.5120

0.5121

0.5122

0.5123

0.5124

0.5125

0.5126

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sm/Nd

143

Nd

/

144

Nd

(350)

Kr

Gab

GG

t = 350 Ma

Fractionation

Assim

ilat
ion

background image

Sr AND Nd ISOTOPE GEOCHEMISTRY                                                                       483

tance of the crustal contribution to the West-Carpathian gran-
itoids is also confirmed by the neodymium crustal index (De-
Paolo et al. 1992) NCI = 0.4–1, mostly between 0.6–0.8 (Ta-
ble 2). This is in accordance with the presence of huge
amount of anatectic granite rocks elsewhere within the Euro-
pean Hercynides.

Discussion

Source of rocks

The source rocks of the West-Carpathian granitoids were

discussed many times (e.g. Cambel & Petrík 1982; Krá
1992, 1994; Hovorka et al. 1994; Petrík et al. 1994; Kohút &
Nabelek 1996; Petrík & Kohút 1997). According to Krá
(l.c.), the Tatric and the Veporic granitoids were generated
from an isotopically inhomogeneous source (mixing of man-
tle and crustal material) with a low Rb/Sr ratio. Petrík et al.
(1994), considering the S-type rocks, suggested melting of
peraluminous muscovite- and biotite-bearing metasedimen-
tary rocks with carbonaceous, graphitized intercalations, via
dehydration melting. Biotite- and biotite-hornblende pla-
giogneisses, according to the authors (l.c.), seem to be a
proper source for melting of the I-type group. Kohút & Na-
belek (1996), considering part of the Tatric I/S granitoids,
suggested the melting of a vertically-zoned lower crust in-
cluding older products of a volcanic arc (mantle-derived
magmas) and crustal metasediments. Petrík & Kohút (1997)
preferred for a) the S-type granites — supracrustal, reduced
granulite facies rocks with minor addition of a mantle-like
component, b) the I-type group — intermediate, non-reduced
metaigneous rocks in interaction with underplated basaltic
crust, c) the A-type group — H

2

O-poor and F-rich granulite

and/or tonalite crust, d) the Gemeric granites originated from
mature, recycled sedimentary supracrustal rocks, or rocks
which experienced sea-floor weathering, and were permeated
by volcanic (boron) emanations.

The presented isotopic data (Sr, Nd) preclude a simple man-

tle or crustal origin for most of the Carpathian granites. Al-
though the lowermost 

87

Sr/

86

Sr

(350)

 ratio in Fig. 4 is close to

the mantle/basalt limit (0.705), in the majority of samples this
ratio is slightly higher (0.706–0.708). Such low I

Sr

 are typical

for I-type granite rocks e.g. McCulloch & Chappell (1982),
Hensel et al. (1985), Liew et al. (1989) and Petford & Atherton
(1996). Low I

Sr

 might be interpreted in a variety of ways: (1)

melting of sedimentary rocks, containing much young volca-
nic material; 2) melting of lower crustal rocks with Rb deplet-
ed by granulite-facies metamorphism; 3) melting of a mixture
of deep sea sediments with sea-floor basalts, 4) subducted oce-
anic slab melting 5) melting of underplated basaltic crust, and
6) melting of old greenstone. However, the situation 1, 3, 4
and 5, are typical for an active margin (Andean type) or ma-
ture island arc geotectonic setting, while the European Her-
cynides are connected with continental collisions (Burg &
Matte 1978; Matte 1986, 1991; Pin & Duthou 1990; von
Raumer & Neubauer 1993; Janák 1994 and Petrík & Kohút
1997). The nearly balanced and quasi-homogenized Rb/Sr iso-
tope system (Fig. 4) in contrast with the Sm/Nd system
(Fig. 6), demonstrate dominance of the Hercynian processes
during the constitution of the West-Carpathian basement. Due
to multistage collisional tectonics the pre-Carboniferous crust
of the European Hercynides was sufficiently thickened, hot
enough and „granite fertile“ (Vielzeuf et al. 1990). The dehy-
dration melting of muscovite, biotite and/or hornblende-bear-
ing rocks has been widely suggested as a melt-forming process
during crustal anatexis (Clemens & Vielzeuf 1987; LeBreton
& Thompson 1988; Patiño Douce et al. 1990; Skjerlie et al.
1993; Wolf & Wyllie 1994; Singh & Johannes 1996 and Mon-
tel & Vielzeuf 1997 amongst others). The highly fertile poten-
tial source for this melting could have been greywackes,
metapelites, hydrated mafic or intermediate metavolcanics
(amphibolites and/or greenstone rocks), primary andesites or
tonalites. However, isotopic constraints discard pure depleted
mantle source on the basis distinctly negative 

ε

Nd

(350)

, as well

as uncontaminated crustal source due to the low I

Sr

, for the

majority of Carpathian granites, therefore a heterogeneous
source can be inferred. The 

ε

Nd

(350)

 versus 

ε

Sr

(350)

 data for the

West-Carpathian granitoids (Fig. 7) are more or less consistent
with derivation from an enriched source in the subcontinental
lithosphere or amphibolitic lower crust imbricated during ini-
tial stage of intracontinental subduction/collision, with the ad-
dition of an upper crustal component. Since, collisional sce-
narios rule out a substantial input of mantle magma, a
sufficient heat source for melting is necessary. Only sedimen-
tary rocks enriched in U, Th and K are characterized by a high
radioactive heat production, from potential supra-crustal
sources. As was mentioned above, this precursor forms a mi-
nor contribution to the magma with observed isotopic signa-
ture, therefore some additional heat flux is required for melt-
ing of the lower crust. Heat from an underplated and/or
intraplated mantle-derived magma could provide the necessary
thermal energy for crustal anatexis (Holland & Lambert 1975;
Wells 1981; Huppert & Sparks 1988; Dewey 1988 amongst
others). However, the genetic relations of the West-Carpathian
granitoids with the gabbro from the Veporic Superunit are not
clear, recent studies in Branisko Mts. confirmed presence of
gabbroic rocks within a greenstone–granite anatectic complex.
The tectonic importance of these rocks could be questioned
without precise U-Pb dating, inasmuch is not clear, if they pro-

Fig. 8.

 Diagram Nd isotope evolution against time, showing de-

pleted mantle model ages t

(DM2st)

. DM curve according to Goldstein

et al. (1984).

-20

-15

-10

-5

0

5

10

15

0

500

1000

1500

2000

2500

Age (Ma)

CHUR

DM

600 Ma

1100 - 1400 Ma

1600 Ma

ε

 Nd

 (0)

background image

484                                                                                              KOHÚT et al.

moted the Hercynian tectonic and/or anatectic processes, or
represent a Pan-African product of mantle magma (t

DM

 = 613

Ma), forming underplated “juvenile” basaltic crust. Our data,
with the exceptions of the Kralička leucogranites and the Ge-
meric granites, require a minimum of three reservoir compo-
nents to satisfy the range of values within the complex, as fol-
lows: a depleted mantle (DM) component, LREE-enriched
mafic lower crust and continental crust (CC). The heteroge-
neous source is inferred by the variegated association of meta-
morphic xenoliths (gneisses, amphibolites, eclogites ± granu-
lites) and/or MME, which are observed commonly in the
West-Carpathian granites (Hovorka & Petrík 1992; Petrík et
al. 1994; Janák 1994; Janák et al. 1996, 1999; Petrík & Kohút
1997). Indeed, the Carpathians basement in its recent form,
represents a big puzzle consisting of low- to high-grade meta-
morphic rocks, amphibolites, migmatites, orthogneisses, gran-
ites, greenstone rocks and/or upper Paleozoic sedimentary and
volcanic rocks.

Crustal evolution

As for almost all European basement territory, products of

the Hercynian orogeny are dominant in the Western Car-
pathians crystalline areas at the present erosion level. The
available isotope data (U-Pb, Rb-Sr and Ar-Ar) mainly date
the event between 360 and 340 Ma. The HT/MP metamor-
phism with concomitant widespread granitoid magmatism was
responsible for potential resetting of old Rb-Sr isotopic
records within the precursor/source rocks. So far only scarce
U-Pb zircon data were published indicating older events, in
the Gemeric Superunit — 403 Ma for porphyroid rocks
(Scherbak et al. 1988). In the Tatric Superunit, an orthogneiss
precursor of age 380–405 Ma (Poller et al. 1997; Poller et al in
review) and/or a 500 Ma old metamorphic event from
metasedimentary rocks of the lower unit (Todt et al. 1998),
have been documented. The presented apparent crustal model
ages t

(DM2st)

 = 1.6

 

~ 1.1 Ga (Table 2 and Fig. 8) are partly in

accord with recent U-Pb zircon upper intercept data (2.5 ~
1.2 Ga: Poller et al. 1997; Poller et al in review; Krá  et al.
1997 and Michalko et al. 1998). Available Sm-Nd model ages
t

(DM)

 single-stage, upper intercept ages from conventional and

single grain U-Pb zircon dating, as well as Pb-Pb isochrons of
leached samples were used to derive semi-quantitative esti-
mates on crustal growth rates (Kohút et al. 1998). The Hercyn-
ian crust of the Western Carpathians consists predominantly of
reworked–recycled Proterozoic crust with a minor addition
(ca. 10 %) of amalgamated Archean rocks (Kohút et al. l.c.).
The Western Carpathians crustal growth was continuous dur-
ing the Proterozoic period, which is more consistent with the
growth of the supercontinent Laurasia, than of Gondwana (Ge-
bauer et al. 1989; Gebauer & Williams 1990) — showing an
episodic character. The Western Carpathians average crustal
age is 1590 Ma (Kohút et al. 1998), however, the presented
Sm-Nd data (Table 2) indicate only 1250 Ma, which is young-
er than in other segments of the European Hercynides –1.8 Ga
(Gebauer & Williams 1990). During the Hercynian orogeny
mainly Middle Proterozoic rock products of crustal origin
were influenced by collision. This is in accord with new Pb-Pb
whole rock isotope studies from the Tatra Mts., where rocks

gave a secondary isochron with the age of 1200 Ma and 

µ

 = 8.2

and/or 

κ

 = 3.8 — typical for a crustal source of the precursor

(Todt et al. 1998). All facts support the concept that Hercynian
Europe comprises mainly recycled Proterozoic components
with significant new Paleozoic additions as well as minor
Archean contributions (Liew & Hofmann 1988).

Conclusions

The Sr-Nd isotopic compositions of the West-Carpathian

granitic rocks are comparable with other segments of the
European Hercynides such as the Bohemian Massif, Massif
Central and/or Eastern Alps. Low I

Sr

, typical for I-type

granite rocks, are consistent with derivation from Rb de-
pleted lower crustal rocks. The 

ε

Nd

(0) values varying from

–2.3 to –9.4 are analogous to those common in crustal ana-
tectic granites of Central Europe, although from the posi-
tion of the samples in the CHUR-UR diagram, (IV quadrant
with affinity to quadrant I), indicating Sm enrichment of
these rocks, an enriched source in the subcontinental lithos-
phere or amphibolitic lower crust, can be inferred. The
geochemical and isotopic signature of the studied samples
reflects, rather open system processes with mixing of
(mainly crustal) magmas from heterogeneous sources, and/
or crustal contamination, than a simple mantle and/or crust-
al origin for most of the Carpathian granites. We cannot ex-
clude, from the presented data, a hypothetical mantle (DM)
source, at least as heat flux during crustal anatexis process-
es. The apparent crustal residence ages, indicated by Nd
model age — t

(DM2st)

 = 1.6 ~ 1.1 Ga, are in accord with oth-

ers from the Hercynian belt of Europe. All geochemical
features suggest that the West-Carpathian granitoids are
analogous to the VAG (CAG) igneous suites, commonly re-
lated to subduction processes at an active (Andean) conti-
nental margin. However, the surrounding metamorphic rock
associations and their P-T conditions indicate rather intrac-
ontinental subduction, or a collisional setting, involving
high-grade metasedimentary and metaigneous rocks at low-
er- to mid-crustal conditions. The spatial and temporal dis-
tribution of Late Paleozoic sedimentary basins in the West-
ern Carpathians (Vozárová & Vozár 1996) suggest
continental interior source areas. In view of all the facts
outlined here, we can conclude that the West-Carpathian
granite rocks were generated by partial melting of mainly
crustal Proterozoic material, during subduction-collisional
processes of the Hercynian orogeny.

Acknowledgements:

 We are grateful to Dr. Igor Broska, Dr.

ubomír Hraško, Dr. Igor Petrík and Dr. Vojtech Vilinovič,

who have kindly donated samples for this study and permitted
publication of primary chemical data. Prof. Petr Černý (The
University of Manitoba, Winnipeg) and Dr. Pavel Uher (SAS
Bratislava) are thanked for major and trace element analyses,
performed due to NSERC Grant #311-1727-17. Dr. Claudia
Carl (BGR Hannover) is greatly acknowledged for Rb/Sr iso-
tope analyses. This paper greatly benefited from construtive
reviews by Vojtěch Janoušek, Igor Petrík and Ján Krá . The
paper is a contribution to the IGCP Project No. 373.

background image

Sr AND Nd ISOTOPE GEOCHEMISTRY                                                                       485

References

Bagdasaryan G.P., Gukasyan R.Kh., Cambel B. & Veselský J.,

1983: Results of Rb-Sr age determinations of metamorphic
rocks of the Malé Karpaty crystalline complex. Geol. Zbor.
Geol. Carpath., 

34, 387–397 (in Russian, English summary).

Bagdasaryan G.P., Gukasyan R.Kh., Cambel B. & Veselský J.,

1985: Rb-Sr isochron dating of the Ďumbier zone granitoids
of the Nízke Tatry Mts. (Western Carpathians). Geol. Zbor.
Geol. Carpath.,

 36, 637–645 (in Russian, English summary).

BenOthman D., Fourcade S. & Allégre C.J., 1984: Recycling pro-

cesses in granite-granodiorite complex genesis: the Querigut
case studied by Nd-Sr isotope systematics. Earth Planet. Sci.
Lett., 

69, 290–300.

Boynton W.V., 1984: Geochemistry of the rare earth elements: me-

teorite studies. In: Henderson P. (Ed.): Rare earth elements
geochemistry. Elsevier

, 63–114.

Burchart J., 1968: Rubidium-strontium isochrone ages of the crystal-

line core of the Tatra Mts., Poland. Amer. J. Sci., 266, 895–907.

Burg J.P. & Matte Ph., 1978: A cross-section trough the French

Massif Central and the scope of its Variscan geodynamic evo-
lution. Z. Dtsch. Geol. Gesell., 109, 429–460.

Cambel B. & Petrík I., 1982: The West Carpathian granitoids: I/S

classification and genetic implications. Geol. Zbor. Geol.
Carpath., 

33, 255–267.

Clemens J.D. & Vielzeuf D., 1987: Constraints on melting and

magma production in the crust. Earth Planet. Sci. Lett., 86,
287–306.

DePaolo D.J. & Wasserburg, 1976: Nd isotope variations and

petrogenetic models. Geophys. Res. Lett., 3, 249–252.

DePaolo D.J., Perry F.V. & Baldridge S.W., 1992: Crustal versus

mantle sources of granitic magmas: a two parameter model
based on Nd isotopic studies. Trans. R. Soc. Edinburgh, Earth
Sci., 

83, 439–446.

Dewey J.F., 1988: Extensional collapse of orogens. Tectonics, 7,

1123–1139.

Dupej J. & Siegl K., 1984: Geology of the Kralička granite and its

environment (Nizke Tatry Mts., Western Carpathians) Geol.
Zbor. Geol. Carpath., 

35, 395–411.

Faure G., 1986: Principles of Isotope Geology. Wiley, New York,

2

nd 

ed., 1–589.

Finger F., Frasl G., Haunschmidt B., von Quadt A., Schermaier A.,

Schindlmayr A.O. & Steyrer H.P., 1992: Late Paleozoic plu-
tonism in the Eastern Alps. ALCAPA Field Guide, IGP/KFU
Graz, 37–45.

Finger F., Frasl G., Haunschmidt B., Lettner H., von Quadt A.,

Schermaier A., Schindlmayr A.O. & Steyrer H.P., 1993: The
Zentralgneise of the Tauern window (Eastern Alps): Insight
into an intra-Alpine Variscan batholith. In: Von Raumer J.F.
& Neubaue F. (Eds.): Pre-Mesozoic geology of the Alps.
Springer, 

Berlin–Heidelberg–New York, 375–391.

Gebauer D., Williams I.S., Compston W. & Grünenfelder M.,

1989: The development of Central European continental crust
since the early Archean based on conventional and ion-mi-
croprobe of up to 3.84 by. old detrital zircons. Tectonophys-
ics, 

157, 81–96.

Gebauer D. & Williams I.S., 1990: Crust and mantle evolution of

the European Hercynides. Abstr. ICOG 7, Canberra, Geol.
Soc. Austr

., 27, 38.

Goldstein S.J., O’Nions R.K. & Hamilton P.J., 1984: A Sm-Nd iso-

topic study of atmospheric dusts and particulates from major
river systems. Earth Planet. Sci. Lett., 70, 221–236.

Goldstein S.J. & Jacobsen S.B., 1988: Nd and Sr isotopic system-

atic of rivers water suspended material: implications for
crustal evolution. Earth Planet. Sci. Lett., 87, 249–265.

Hensel H.D., McCulloch M.T. & Chappell B.W., 1985: The New

England Batholith: constraints on its derivation from Nd and
Sr isotopic studies of granitoids and country rocks. Geochim.
Cosmochim. Acta

, 49, 369–384.

Holland J.G. & Lambert R.St.J., 1975: The chemistry and origin of

the Lewisian gneisses of Scottish mainland: The Scourie and
Inver assemblages and sub-crustal accretion. Precambrian
Res.

, 2, 161–188.

Hovorka D., Méres Š. & Ivan P., 1994: Pre-Alpine Western Car-

pathian basement complexes: lithology and geodynamic set-
ting. Mitt. Österr. Geol. Gesell., 86, 33–44.

Hovorka D. & Petrík I., 1992: Variscan granitic bodies of the

Western Carpathians — the backbone of the mountain chain.

                                                                        Appendix

Sample description and location.

      X

      Y

     Z

VF- 43

— muscovite-biotite granite, natural outcrop Vyšná Krivá,

412114.31

1196930.65

1 035.0

VF-356

— biotite tonalite, quarry Vyšné Matejkovo,

408061.99

1200190.42

   812.0

VF-639

— biotite granodiorite, natural outcrop Blatná valley,

414769.84

1198772.91

   742.0

VF-700

— muscovite granite, natural outcrop Nižné Matejkovo,

406991.06

1199585.00

   825.0

VF-298

— muscovite-biotite granodiorite, nat.o., Vyšné Matejkovo,

406993.63

1200361.06

   705.0

VK-139

— biotite granodiorite, natural outcrop Malý Javorník,

569486.33

1268494.94

   545.0

BGPI-1

— biotite granodiorite, natural outcrop Hradná valley,

501917.89

1235838.12

   290.0

T-87

— biotite granodiorite, natural outcrop Krnča,

484357.55

1246524.83

   250.0

MM-29

— muscovite-biotite granite, natural outcrop Poruba valley,

460325.62

1212841.99

   665.0

Z-164

— biotite-muscovite granite, quarry Ve ká valley,

444358.90

1216640.10

   590.0

MF-4a

— muscovite-biotite granodiorite, quarry Bystrička,

416914.89

1179812.65

   575.0

NT-401

— biotite granodiorite, natural outcrop Liptovská Lúžna,

401950.15

1204520.10

   960.0

ZK-4

— muscovite granite, natural outcrop Vyšná Boca,

372810.20

1210650.23

1 045.0

TL-117

— muscovite-biotite granodiorite, nat.o., Prostredný ridge,

350195.62

1182543.09

1 920.0

VG-46

— biotite granodiorite, quarry Klementka,

383220.96

1238311.30

   870.0

VG-47

— muscovite-biotite granodiorite, quarry Chorepa,

366596.55

1247755.24

   555.0

V-7312

— biotite-muscovite granite, natural outcrop České Brezovo,

371030.13

1259533.48

   340.0

V-9738

— muscovite-biotite granite, natural outcrop Solisko,

343414.11

1236571.87

   660.0

VVM-129 — biotite-muscovite granite, drill well Peklisko,

313567.80

1226895.76

   596.9

CH-3/72 — muscovite-biotite granodiorite, quarry near Ružín dam,

274405.09

1223137.43

   360.0

KV-3/622 — gabbro, borehole Rochovce,

333852.00

1238006.15

   408.5

background image

486                                                                                              KOHÚT et al.

In: Vozár J. (Ed.): The Paleozoic geodynamic domains of the
Western Carpathians, Eastern Alps and Dinarides. Spec. Vol.
IGCP Project 276

, Bratislava, 57–66.

Hraško  ., 1993: The Alpine granitoids — possibility of existence

within contact zone between Veporicum and Gemericum and
their role in the Western Carpathians structure. Open File Re-
port, GÚDŠ, 

Bratislava, 1–144 (in Slovak).

Hraško  ., Kotov A.B., Salnikova E.B. & Kovach V.P., 1998: En-

claves in the Rochovce granite intrusion as indicators of the
temperature and origin of the magma. Geol. Carpathica, 49,
2, 125–138.

Huppert H.E. & Sparks R.S., 1988: The generation of granitic

magmas by intrusion of basalt into continental crust. J. Pe-
trology,

 29, 599–624.

Jacobsen S.B. & Wasserburg G.J., 1980: Sm-Nd isotopic evolution

of chondrites. Earth Planet. Sci. Lett., 50, 139–155.

Janák M., 1994: Variscan uplift of the crystalline basement, Tatra

Mts., Central Western Carpathians: Evidence from 

40

Ar/

39

Ar

laser probe dating of biotite and P-T-t paths. Geol. Carpathi-
ca, 

45, 293–300.

Janák M., O´Brien P.J., Hurai V. & Reutel C., 1996: Metamorphic

evolution and fluid composition of garnet-clinopyroxene am-
phibolites from the Tatra Mountains, Western Carpathians.
Lithos, 

39, 57–79.

Janák M., Hurai V., Ludhová L., O´Brien P.J. & Horn E.E., 1999:

Dehydration melting and devolatilization of high-grade
metapelites: the Tatra Mountains, Western Carpathians. J.
Metamor. Geol. 

(in print).

Janoušek V., Rogers G. & Bowes D.R., 1995: Sr-Nd isotopic con-

straints on the petrogenesis of the Central Bohemian pluton,
Czech republic. Geol. Rdsch., 84, 520–534.

Keay S., Collins W.J. & McCulloch M.T., 1997: A three-compo-

nent Sr-Nd isotopic mixing model for granitoid genesis,
Lachlan fold belt, eastern Australia. Geology, 25, 4, 307–310.

Kohút M., Carl C. & Michalko J., 1996: Granitoid rocks of the

Ve ká Fatra Mts. Rb/Sr isotope geochronology (Western Car-
phatians, Slovakia). Geol. Carpathica, 47, 2, 81–89.

Kohút M., Kotov A.B., Salnikova E.B., Kovach V.P. & Michalko

J., 1995: Hercynian granitic rocks of the Western Car-
pathians: products of crustal reactivation. In: Brown M. &
Piccoli Ph.M. (Eds.): The origin of granites and related
rocks, USGS Circular 1129, 

Reston, 81–82.

Kohút M. & Nabelek P.I., 1996: Sources of the Ve ká Fatra grani-

toid rocks, Slovakia: Isotopic constraints or contradiction?
Pol. Miner. Soc., Spec. Pap., 

7, 47–50.

Kohút M., Poller U., Todt W. & Janák M., 1998: Where are the

roots of the Western Carpathians (Slovakia)? — Evidence
from isotope study. POCEEL Praha, Acta Univ. Carolinae,
Geologica, 

42, 2, 277.

Kovach A., Svingor E. & Grecula P., 1986: Rb-Sr isotopic ages of

granitoid rocks from the Spišsko-gemerské rudohorie Mts.
Miner. slovaca, 

18, 1–14.

Krá  J., 1992: Outline of the strontium isotope evolution in the

basement of Tatric and Veporic units. Miner. slovaca, 24,
197–208.

Krá  J., 1994: Strontium isotopes in granitic rocks of the Western

Carpathians. Mitt. Österr. Geol. Gesell., 86, 75–81.

Krá  J., Hess J.C., Kober B. & Lippolt H.J., 1997: 

207

Pb/

206

Pb and

40

Ar/

39

Ar age data from plutonic rocks of the Strážovské

vrchy Mts. basement, Western CarpathiansIn: Grecula P.,
Hovorka D. & Putiš M. (Eds.): Geological evolution of the
Western Carpathians. Miner. slovaca—Monograph, 

253–260.

Krist E., Korikovsky S.P., Putiš M., Janák M. & Faryad S.W.,

1992: Geology and petrology of metamorphic rocks of the
Western Carpathian metamorphic complexes. Univ. Comen.,
Bratislava, 7–342.

LeBreton N. & Thompson A.B., 1988: Fluid-absent (dehydration)

melting of biotite in metapelites in the early stage of crustal
anatexis. Contr. Mineral. Petrology, 99, 226–237.

Liew T.C. & Hofmann A.W., 1988: Precambrian crustal compo-

nents, plutonic associations, plate environment of the Her-
cynian fold belt of Central Europe: Indications from a Nd and
Sr isotopic study. Contr. Mineral. Petrology, 98, 129–138.

Liew T.C., Finger F. & Höck V., 1989: The Moldanubian granitoid

plutons of Austria: Chemical and isotopic studies bearing on
their environmental setting. Chem. Geol., 76, 41–55.

Matte Ph., 1986: Tectonics and Plate Tectonics Model for the

Variscan Belt of Europe. Tectonophysics, 126, 329–374.

Matte Ph., 1991: Accretionary history and crustal evolution of the

Variscan belt in Western Europe. Tectonophysics, 196, 309–337.

Michalko J., Bezák V., Krá  J., Huhma H., Mäntäri I., Vaasjoki M.,

Broska I., Hraško  . & Határ J., 1998: U/Pb zircon data from
the Veporic granitoids (Western Carpathians). Krystalinikum,
24, 91–104.

McCulloch M.T. & Chappell B.W., 1982: Nd isotopic characteristic

of S- and I-type granites. Earth Planet. Sci. Lett., 58, 51–64.

Montel J.M. & Vielzeuf D., 1997: Partial melting of me-

tagreywackes, Part II. Compositions of minerals and melts.
Contr. Mineral. Petrology

, 128, 2–3, 176–196.

Moreno-Ventas I., Rogers G. & Castro A., 1995: The role of hy-

bridization in the genesis of Hercynian granitoids in the Gre-
dos Massif, Spain: inferences from Sr-Nd isotopes. Contr.
Mineral. Petrology

, 120, 137–149.

Neymark L.A., Kovach V.P., Nemchin A.A., Morozova I.M., Ko-

tov A.B., Vinogradov D.P., Gorochovsky B.M., Ovchinikova
G.V., Bogomolova L.M. & Smelov A.P., 1993: Late Archaean
intrusive complexes in the Olekma granite-greenstone terrain
(Eastern Siberia): geochemical and isotopic study. Precam-
brian Res.

, 62, 453–472.

Patiño Douce A.E., Humphreys E.D. & Johnston A.D., 1990: Ana-

texis and metamorphism in tectonically thickened continental
crust exemplified by the Sevier hinterland, western North
America. Earth Planet. Sci. Lett., 97, 290–315.

Petford N. & Atherton M., 1996: Na-rich partial melts from Newly

Underplated Basaltic Crust: the Cordiliera Blanca Batholith,
Peru. J. Petrology, 37, 6, 1491–1521.

Petrík I. & Broska I., 1994: Petrology of two granite types from the

Tríbeč Mountains, Western Carpathians: an example of allanite
(+magnetite) versus monazite dichotomy. Geol. J., 29, 59–78.

Petrík I., Broska I. & Uher P., 1994: Evolution of the Western Car-

phatian granite magmatism: Age, source rock, geotectonic
setting and relation to the Variscan structure. Geol. Carpathi-
ca,

 45, 283–291.

Petrík I. & Kohút M., 1997: The evolution of granitoid magmatism

during the Hercynian orogen in the Western Carpathians. In:
Grecula P., Hovorka D. & Putiš M. (Eds.): Geological evolu-
tion of the Western Carpathians. Miner. slovaca—Mono-
graph, 

235–252.

Pin Ch. & Duthou J.L., 1990: Sources of Hercynian granitoids

from the French Massif Central: inferences from Nd isotopes
and consequences for crustal evolution. Chem. Geol., 83,
281–296.

Plašienka D., 1995: Passive and active margin history of the north-

ern Tatricum (Western Carpathians, Slovakia). Geol. Rdsch.,
84, 748–760.

Plašienka D., Grecula P., Putiš M., Hovorka D. & Kováč M., 1997.

Evolution and structure of the Western Carpathians: an over-
view. In: Grecula P., Hovorka D. & Putiš M. (Eds.): Geological
Evolution of the Western Carpathians. Miner. slovaca—Mono-
graph, 

1–24.

Poller U., Todt W., Janák M. & Kohút M., 1997: Pre-Variscan or-

thogneisses of the Western Tatra Mts.: U-Pb single zircon

background image

Sr AND Nd ISOTOPE GEOCHEMISTRY                                                                       487

data by cathodoluminiscence controlled dating. Terra Ab-
stracts, 

9, 1, EUG 9, Strasbourg, 488.

Poller U., Janák M., Kohút M. & Todt W., 1998: Pre-Variscan evo-

lution of the Western Tatra Mts (Slovakia): A Sm-Nd, Rb-Sr
and Pb-Pb isotope study. The IX

th

 ICOG meeting Beijing

,

Chin. Sci. Bull

., 43, 103.

Poller U., Janák M., Kohút M. & Todt W., in review: U-Pb zircon

data from the Tatra Mountains, Western Carpathians, Slova-
kia: Evidence for a multistage Variscan granite magmatism.
Submitted to Geologische Rundschau.

von Raumer J.F. & Neubauer F., 1993: Late Proterozoic and Paleo-

zoic evolution of the Alpine basement — an overview. In:
von Raumer J.F. & Neubauer F. (Eds.): Pre-Mesozoic Geolo-
gy of Alps. Springer, 

Berlin, Heidelberg, New York, 625–639.

Richards P., Shimizu N. & Allegre C.J., 1976: 

143

Nd/

144

Nd, a natu-

ral tracer: An application to oceanic basalts. Earth Planet.
Sci. Lett.,

 31, 269–278.

Shcherbak N.P., Bartnicky E.N., Mickevich N.Y., Stepanyuk L.M.,

Cambel B. & Grecula P., 1988: U-Pb radiometric zircon age
determination from the Modra granodiorite of the Malé Kar-
paty Mts. and a porfyroid of the lower Paleozoic of the Spišsko
-gemerské rudohorie Mts. (Western Carpathians), Geol. Zbor.
Geol. Carpath., 

39, 427–436 (in Russian, English summary).

Shaw A., Downes H. & Thirlwall M.F., 1993: The quartz diorites

of Limousin: elemental and isotopic evidence of Devono-
Carboniferous subductionin the Hercynian belt of the French
Massif Central. Chem. Geol., 107, 1–18.

Siegl K., 1976: The structure of the Low Tatra pluton (West Car-

pathians). Geol. Zbor. Geol. Carpath., 27, 149–164.

Singh J. & Johannes W., 1996: Dehydration melting of tonalites.

Part II. Composition of melts and solids. Contr. Mineral. Pe-
trology, 

125, 26–44.

Skjerlie K.P., Patiño Douce A.E. & Johnston A.D., 1993: Fluid-ab-

sent melting of a layered crustal protolith: Implications for
the generation of anatectic granites. Contr. Mineral. Petrolo-
gy

, 114, 356–378.

Todt W., Poller U., Janák M. & Kohút M., 1998: U-Pb Zircon dat-

ing of metamorphic rocks of the West-Tatra using single zir-
con grains under cathodoluminescence control. The IX

th

ICOG meeting Beijing, Chin. Sci. Bull.,

 43, 130.

Vielzeuf D., Clemens J.C., Pin Ch. & Moinet E., 1990: Granites

granulites and crustal differentiation. In: Vielzeuf D. & Vidal
Ph. (Eds.): Granulites and Crustal Evolution. Kluwer, Dor-
drecht, 59–85.

Vozárová A. & Vozár J., 1996: Terranes of Western Carpathians —

North Pannonian Domain. Slovak Geol. Mag., 1/96, 65–85.

Wedepohl K.H., 1995: The composition of continental crust.

Geochim. Cosmochim. Acta

, 59, 7, 1217–1232.

Wells P.R.A., 1981: Accretion of continental crust: thermal and

geochemical consequences. Philos. Trans. R. Soc. London,
A301, 347–357.

Wendt I., 1986: Radiometrische Methoden in der Geochronologie.

Ellen Pigler Verlag, 

Clausthal Zellerfeld, 80–86.

Wolf M.B. & Wyllie P.J., 1994: Dehydration-melting of amphibo-

lite at 10 kbar: Effects of temperature and time. Contr. Miner-
al. Petrology,

 115, 369–383.