background image















Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland


Lviv University, Department of Historical Geology, Hrushevsky street 4, 290005 Lviv, Ukraine

(Manuscript received December 28, 1998; accepted in revised form June 22, 1999)


 In the area of Nowy Sącz the Lower Miocene, marine deposits (of the N 5, NN 2–3 biozones) have been

discovered in the southern part of the Rača Subunit of the Magura Nappe. These deposits belong to the Zawada Fm.,
which probably overlaps the Malcov Fm. (Upper Eocene–Oligocene) with an erosional hiatus. These folded deposits
are represented by medium- to thick-bedded glauconitic sandstones with intercalations of thick-bedded marls. Facies-
lithological development of the Zawada Fm. displays features characteristic for the northern part of the Magura Basin
(Siary facies zone). During the Early Burdigalian the partly folded Magura Nappe was flooded from the residual
flysch basin located in the north. At that time the seaway connection between this basin and the Vienna Basin via the
Orava area was probable established.

Key words:

 Lower Miocene, Outer Carpathians, Magura Nappe, Rača Subunit, lithostratigraphy, calcareous

nannoplankton, foraminifers, paleogeography.


The Magura Nappe, the largest and innermost tectonic unit
of the Western Capathians, is subdivided into four facies-tec-
tonic subunits (Fig. 1). From south to north these are: the
Krynica, Bystrica, Rača and Siary subunits (Koszarski et al.
1974). Up to the end of fifties the Upper Eocene Magura
Sandstones were regarded as the youngest deposits of the
Magura Nappe. In 1959, Ksią kiewicz & Leško discovered

in the Eastern-Slovak part of the Magura Nappe deposits
with a facies development and stratigraphic position similar
to the Oligocene Menilite and Krosno Beds of the Outer Fly-
sch Carpathians. Those deposits were described by Świdz-
iński (1961a,b) as the Malcov Beds.

In Eastern Slovakia (Fig. 1) these deposits filled three nar-

row, NW–SE trending synclines (see Nemčok 1961, 1985).
The middle syncline (Malcov–Richvald–Raslavice) covers a
tectonic contact? between the Bystrica and Krynica subunits,

Fig. 1.

 Tectonic position of the Magura Nappe in Poland and Slovakia (after  ytko et al. 1989, supplemented): 1— crystalline core of the

Tatra Mts., 2 — High Tatra and sub-Tatra Units, 3 — Podhale flysch, 4 — Pieniny Klippen Belt, 5 — Magura Nappe, 5a — Malcov Fm., 6
— Grybów Unit, 7 — Dukla Unit, 8 — Fore-Magura Unit, 9 — Silesian Unit, 10 — Sub-Silesian Unit, 11 — Skole Unit, 12 — Miocene
deposits upon the Carpathians, 13 — andesite, 14 — investigated area; Ms — Siary Subunit, Mr — Rača Subunit, Mb — Bystrica Subunit,
Mk — Krynica Subunit.

background image

420                                                                                          OSZCZYPKO et al.

whereas the northern one, known as the Brezovka Syncline
(Dlhá Lúka–Brezovka–Okrúhle) masks the tectonic contact
between the Rača and Bystrica subunits. In the Polish part of
the Magura Nappe the Malcov Beds are known from a few
separated localities. At first, these beds were found in the Le-
luchów section (Fig. 1) on the Polish-Slovak border. This
section is located along the contact between the Pieniny
Klippen Belt and Magura Nappe (see Świdziński 1961b;
Blaicher & Sikora 1967; Nemčok 1985; Birkenmajer & Osz-
czypko 1989; Oszczypko et al. 1990; Oszczypko 1996; Osz-
czypko-Clowes 1998a). Later on, the Malcov Beds were de-
scribed in the Rača Subunit in the area of the Nowy Sącz
Basin (Figs. 1, 2), in the central, depressed part of the Magu-
ra Nappe (Oszczypko 1973; Blaicher & Oszczypko 1975;
Oszczypko & Wójcik 1992) and then in the Nowy Targ area
(Cieszkowski & Olszewska 1986) close to the PKB (Fig. 1).
The Malcov Beds were also described from Orava by Potfaj
(1983). Later on these beds were established as the Malcov
Formation (see Birkenmajer & Oszczypko 1989) with two
local members: the Leluchów Marl Member (Globigerina
Marls) and Smereczek Shale Member (Menilite Beds). The
Malcov Fm. was regarded as the youngest (Late Eocene–Oli-
gocene) deposits of the Rača, Bystrica and Krynica subunits
of the SE part of the Magura Nappe (see Birkenmajer & Osz-
czypko 1989; Oszczypko 1991). In the northern, marginal

part of the Magura Nappe (Siary Subunit) the Wątkowa
Sandstone and Budzów Beds (Supra-Magura Beds) are
equivalents to the Malcov Fm. (see Ksią kiewicz 1966; Ko-
szarski et al. 1974; Oszczypko 1991). According to recent
calcareous nannoplankton investigations, the age of the Le-
luchów Marl Mb. (Globigerina Marls) has been determined
as the uppermost Eocene–Early Oligocene (NP 19/20, 21 and
22, see M. Oszczypko 1996; Oszczypko-Clowes 1998a). The
upper part of the Malcov Fm., developed in turbiditic facies
is not older than Early Oligocene (NP 22, see Oszczypko-
Clowes 1998b). In the western part of the Magura Nappe in
Poland (Budzów section, Fig. 1) the age of the Wątkowa
Sandstone was determined as NP 19/20, whereas Budzów
(Supra-Magura) Beds were assigned to the NP 19/20, NP 21
and NP 22 zones (see Oszczypko-Clowes 1998b).

The Malcov Formation in the area

of Nowy Sącz — revision

Nowy Sącz I borehole.

 A series of the Middle Miocene

fresh-water sediments of the Biegonice Fm. was pierced to a
depth of 540 m (Fig. 4, see also Oszczypko 1973; Oszczypko
et al. 1992). Below the depth of 540 m, black-grey, clayey
shales with a few very thin-bedded intercalations of calcare-

Fig. 2.

 Geological map of the Nowy Sącz Depression (based on Oszczypko et al. 1992, supplemented). Middle Miocene: 1 — marine

offshore deposits, 2 — littoral deposits, 3 — paludal deposits, 3a — alluvial fan deposits; Magura Nappe: 4 — Senonian-Paleocene de-
posits, 5 — Eocene deposits of the Rača Subunit, 6 — Eocene deposits of the Bystrica Subunit, 7 — Eocene deposits of the Krynica Sub-
unit, 8 — Zawada Fm. (Lower Miocene), 9 — thrust of Bystrica Subunit, 10 — thrust of the Krynica Subunit, 11 — faults, 12 — bore-
holes, 13 — area of Fig. 3.

  OSZCZYPKO et al.

background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               421

ous and muscovitic sandstones were penetrated. These tur-
bidites revealed T


 Bouma’s intervals, whereas medium-

bedded sandstones showed T


 + mconv. Within this com-

plex, resembling the Krosno Beds, a few cm thick layer of
light yellow siderite was found. At the bottom of the shaly-
sandstone complex (from a depth of 602.0 m to 606.5 m),
light-yellow marls occurred. The next underlying beds were
developed as black, grey, clayey shales and siltstones with
some layers of thick bedded, coarse- to fine-grained, strongly
calcareous light-grey sandstones. The succeeding complex
(from 616.6 m to 620.8 m) was developed as brown-reddish,
clayey shales and green marly shales. Deposits occurring be-
tween 540 m and 620.8 m were defined as the Malcov Fm.
(see Oszczypko 1973; see also Blaicher & Oszczypko 1975;
Birkenmajer & Oszczypko 1989; and Oszczypko et al.
1990). The basal portion of this sequence could belong to the
Leluchów Marl Mb. Below the Malcov Fm. to a depth of 704
m, thick-bedded, muscovite sandstones of the Magura For-
mation were recognized (Fig. 4). In the pierced section the
angles of dip were very differentiated. To a depth of 620.8 m
the inclination was relatively gentle (5

°–42°), below 620.8 m

it was steep (50


The core samples from the Malcov Fm. of the Nowy Sącz I

borehole furnished relatively poor foraminiferal fauna (see
Oszczypko 1973). Only samples from a depth of 543–551 m
contained richer Late Eocene-Oligocene microfauna with the
assemblage of small globigerinas: Globigerina officinalis
Subbotina, Globigerina leroy (Banner et Blow) and Turboro-
talia bannerblowi

 (Blaicher). Similar foraminiferal fauna is

known from the upper part of the Globigerina Marls and
from the Menilite Beds. Within reddish-brown-green clayey,
shales (616.6–618.7 m) scanty Middle–Late Eocene benthic
foraminifers were found.

Biegonice section

The Biegonice section, at least 100 m thick,

is located on the steep bank of the Poprad river (Figs. 2, 3). In the
lower part of the section, grey-greenish, muscovitic siltstones
and grey-bluish, marly claystones occur with some thin layers of
grey, muscovitic, calcareous sandstones. Some clayey-sideritic
concretions (10 cm in diameter) have been observed within the
siltstones. The upper part of the section begins with soft, olive-
grey marls and shales with sporadic intercalations of very thin-
bedded (T


) calcareous sandstones. These marls pass upwards

into thick-bedded (1.2 m) medium- to fine-grained, light, moder-
ately calcareous glauconite sandstone with T


 Bouma’s inter-

vals. The uppermost portion of the section is represented by the
dark-grey, thick-bedded (0.5–4.0 m), hard marls of the Łącko
type, with a few intercalations of thin- to medium-bedded bluish,
calcareous sandstones. The lower and upper boundaries of these,
ESE dipping (30–50

°) deposits are tectonic. The upper tectonic

boundary belongs to the thrust of the Bystrica Subunit (see Osz-
czypko 1973; Oszczypko & Wójcik 1992). Assemblages of fora-
minifers occurring in samples from the Biegonice section consist
mainly of planktonic and less abundant benthonic species of vari-
ous stratigraphic ranges (see Blaicher & Oszczypko 1975; Osz-
czypko et al. 1990). The Early-, Middle- and Late-Eocene as well
as Oligocene forms were noticed. The youngest Oligocene spe-
cies Rotalia stellata Reuss, Globorotalia denseconnexa Subboti-
na, Bagatella latiaperta Subbotina, Globanomalina evoluta Sub-
botina, Globigerina angulisuturalis Bolli were compared with the

foraminiferal fauna from the Middle Krosno Beds at Niebylec
(Blaicher & Oszczypko 1975). According to the recent data about
the stratigraphic ranges of Tenuitella denseconnexa (Subbotina)
and Globigerinella evoluta Subbotina (Odrzywolska-Bieńkowa
& Olszewska 1996; Garecka & Olszewska 1998) the age of the
assemblage is not older than Early Miocene. It is in agreement
with the latest age determination of the horizon of the Niebylec
Shales that has been assigned to the Early Miocene (NN 2 Zone
see Ślęzak et al. 1995).

Zawada section.

 Similarly developed deposits crop out in

the small exposures at Zawada (2.5 km toward SE from the
borehole Nowy Sącz I, Fig. 3, see also Oszczypko 1973;
Blaicher & Oszczypko 1975). As in the Biegonice section,
these exposures are located at the front of the Bystrica Sub-
unit thrust (Figs. 2, 3), where light-grey laminated marls and
single layers of thick-bedded sandstones are found. The
sandstones are fine-grained, glauconitic, with siliceous-illitic
cement with characteristic siliceous veinlets. These sand-
stones are identical with the Wątkowa Sandstone and the so-
called Harklowa type of the Magura Sandstones developed in
the marginal part of the Magura Nappe near Gorlice (Świdz-
iński 1953; Szymakowska 1966). At Zawada, the glauconitic
sandstones and marls are overlain by greenish-yellow, clayey
shales as well as by a complex of light-grey and yellow-grey
marls a few meters thick. Within these marls, a 5 cm thick
layer of yellow-grey siderite has been found. In thin-sections
from the marls sometimes fairly abundant small globigerinas
have been observed.

The blue-grey, marly shales furnished abundant benthonic

and planktonic foraminiferal fauna. On the basis of the
planktonic species Globorotalia denseconnexa Subbotina,
Turborotalia inaequiconica 

Subbotina, Globigerina apertura

Cushman,  Globigerina praebulloides Banner et Blow, Glo-
banomalina evoluta

 Subbotina, the age was regarded as Oli-

gocene (see Oszczypko 1973; Blaicher & Oszczypko 1975).
At present, it should be regarded as Early Miocene, as in the
Biegonice section, due to the modified stratigraphic ranges
of the above mentioned species (Garecka & Olszewska

Nowy Sącz 4 borehole.

 In 1984, south of the above de-

scribed exposures, the shallow borehole Nowy Sącz 4 (Figs.
2, 3, 5, 6) was drilled and sampled in the course of geological
mapping (see Oszczypko & Wójcik 1992). This 25 m deep
borehole pierced the following deposits:

0–10.0 m: loams and clays (Pleistocene).
10.0–12.8 m: non-calcareous, bluish-grey shales with thin

intercalation of red shales — Łabowa Shale Formation (Mid-
dle Eocene) of the Bystrica Subunit.

12.8–14.35 m: grey-bluish, parallel-laminated, calcareous

(++HCl) mudstones with underlying fine- to medium-
grained, calcareous (+ HCl), medium-bedded (T



glauconitic sandstones with green siliceous veinlets (angle of
dip 10–40

°, normal position of bedding).

14.35–14.4 m: grey, calcareous mudstones.
14.4–16.8 m: bluish-grey, medium to fine-grained, thick-

bedded muscovite-glauconitic sandstones with intercalations
of greenish and grey calcareous mudstones (angle of dip 5


in the upper part up to 80

° in the base of complex).

16.8–18.3 m: greenish-grey, weathered? claystones.

background image

422                                                                                          OSZCZYPKO et al.

Fig. 3.

 Geological map of the Nowy Sącz area (based on Oszczypko & Wójcik 1992, supplemented). Quaternary: 1 — gravels, sands

and clays of terraces of a height of 2–6 m, 2 — gravels, sands and clays of terraces of a height of 6–12 m, 3 — gravels, sands and clays of
terraces of a height of 17–30 m, 4 — gravels, sands and clays of terraces of a height of 55–80 m; Middle Miocene: 5 — paludal deposits,
Magura Nappe, 6 — Zawada Fm. (Lower Miocene), Magura Fm., 7 — Poprad Mb. (Upper Eocene), 8 — Maszkowice Mb. (Middle
Eocene), 9 —  eleźnikowa Fm. (Middle Eocene), 10 — Beloveža Fm. (Lower-Middle Eocene), 11 — Łabowa Fm. (Lower Eocene), 12
— inverse faults, 13 — faults, 14 — attitude of beds and position of sole mark, 15 —boreholes, 16 — cross-section, 17 — B, Z-location
of the Biegonice and Zawada exposures.

18.3–19.8 m: dark brown and green calcareous (++HCl)


19.8–20.65 m: light grey, fine-grained, convoluted, calcar-

eous (+++HCl) sandstone with intercalation of grey, calcare-
ous (+++HCl) shales.

20.65–23.10 m: dark brown, calcareous mudstones and ol-

ive-green shales with 3 cm intercalation of very fine-grained

23.1–25.0 m: fine- to medium-grained, calcareous sand-

stone (+HCl) with siliceous veinlets and brown-greenish,
calcareous shales and grey mudstone with parallel, sandy
lamination. Angle of dip from 40

° (23.5–23.8 m) up to verti-

cal and overturned position (23.95–24.6 m).

Deposits occurring from a depth of 12.8 to 25 m belong to

the Rača Subunit and are regarded as a new formation: the
Zawada Formation (Early Miocene).

  OSZCZYPKO et al.

background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               423

Fig. 4.

 Geological cross-section A–B (based on Oszczypko & Wójcik 1992, supplemented). 1 — Paludal deposits (Middle Miocene),

Magura Nappe, 2 — Zawada Fm. (Lower Miocene), a — glauconitic sandstone, b — thick-bedded marls, 3 — Malcov Fm. (Upper
Eocene–Oligocene), a — Leluchów Marl Mb., Magura Fm., 4 — Poprad Mb. (Upper Eocene), 5 — Maszkowice Mb. (Middle Eocene), 6
—  eleźnikowa Fm. (Middle Eocene), 7 — Beloveža Fm. (Lower–Middle Eocene), 8 — Łabowa Fm. (Lower Eocene), 9 — Inoceramian
Beds (Senonian–Paleocene).

Fig. 5.

 Geological cross-section C–D (based on Oszczypko 1973, supplemented). 1 — Paludal deposits (Middle Miocene), 1a — offshore

deposits, Magura Nappe, 2 — Zawada Fm. (Lower Miocene), 2a — glauconitic sandstones, 3 — Malcov Fm. (Upper Eocene–Oligocene),
4 — Magura Fm.—Poprad Mb. (Upper Eocene), 5 — faults, 6 — geoelectric sounding, 7 — boreholes.


Studied material and methods.

 Core samples from bore-

hole Nowy Sącz 4 were collected between 10 and 25 m of
the penetrated section for biostratigraphic purposes. Small
foraminifers have been examined in 14 samples and nanno-
plankton in 9.

To isolate the foraminifers, samples were frozen and heated

in a solution of sodium sulphate several times, then washed
over 63 


m mesh sieve and air-dried. After drying, individual

foraminifers were hand-picked. Some of the planktonic spe-
cies, important for the age determination are illustrated by
SEM microphotographs (Plate I).

For the nannoplankton examination all samples were pre-

pared with the standard smear slide technique for light mi-
croscope (LM) observations. The investigations were carried
out under LM at magnification of 1024


 and 1600



phase contrast and crossed nicols. Several specimens photo-
graphed under LM are illustrated in Plate II.

Small foraminifers.

 The abundance, sizes and preserva-

tion of the foraminifers vary from sample to sample. Plank-
tonic, benthonic calcareous and agglutinated foraminifers oc-
cur in the studied material. Corrosion and destruction of tests
have been noticed among calcareous specimens.

Only two samples from the first 3 m contain autochtho-

nous assemblages homogenous in respect of the age of the
foraminifers, whereas in the remaining ones the taxons form-
ing each assemblage are of different age. In those cases old-
er, reworked specimens are in the majority. The youngest
planktonic taxons, the most important for age determination
are very difficult to find because they are very small in size
and much less frequent than the reworked species.

In the samples 28/85/N and 30/85/N (Fig. 6), the flysch

type agglutinated assemblages have been found. Ammodis-
cus latus 

Grzybowski and Reticulophragmium amplectens

(Grzybowski) are the most significant species in those as-
semblages determining the age as the upper part of the Mid-
dle Eocene (Geroch & Nowak 1984; Olszewska 1997).


background image

424                                                                                          OSZCZYPKO et al.

The sample 31/85/N contains impoverished assemblage

with very small and poorly preserved planktonic forms, im-
possible for precise determination.

In the sample 32/85/N at the depth of 14.4 m, the Early

Miocene species Globorotalia praescitula Blow and single
specimen of Globigerinoides primordius Blow et Banner
have been noticed for the first time in the section (Fig. 7).
Planktonic foraminifers are the main component of the as-
semblage with dominance of the Middle Eocene species Tur-
borotalia frontosa 

(Subbotina), Acarinina bulbrooki

(Bolli), Globanomalina micra (Cole), Globigerina eocaena
Gümbel and Subbotina linaperta (Finlay). The next three
samples consist mainly of agglutinated foraminifers with
Haplophragmoides walteri 

Grzybowski, Paratrochammi-


div.sp. and in one case with single specimens of

Reticulophragmium amplectens 

(Grzybowski). These taxons

are common elements in the Eocene assemblages. Among
calcareous forms the benthonic species Cribroelphidium sub-

(Egger) (s. 34/85/N) and planktonic Globorotalia

cf. praescitula and Globorotalia cf. zealandica Hornibrook
have been recognized indicating Early Miocene age. The
sample 36/85/N at the depth of 19.5 m (Fig. 7) has appeared
to be the most important among the others. The foraminiferal
fauna is relatively rich though generally of the very small
sizes. This is an entirely calcareous assemblage with plank-
tonic forms making more than 95 %. It has been noticed that
some tests of the foraminifers are empty and very fragile.
The Middle Eocene species are dominant (see Fig. 7). Glo-
banomalina micra, Turborotalia frontosa 

and Acarinina bulbrooki are the most numerous. Younger species,
that is Late Eocene–Early Oligocene such as Tenuitella liv-

(Bykova), Globoquadrina tripartita (Koch), Globi-

gerina ampliapertura 

Bolli are also present though they are

much rarer. The youngest Early Miocene species so far rec-
ognized, are represented by Globorotalia praescitula (rela-
tively common), Globorotalia kingmai Scott, Bishop et Burt,

cf. mayeri (Cushman et Ellisor), Tenuitelli-

nata pseudoedita

 (Subbotina), Globigerinoides trilobus (Re-

uss) and Chiloguembelitria samwelli (Jenkins). The ben-
thonic foraminifers are represented by the genera Caucasina,
Bolivina, Trifarina, Bulimina 

and Cibicides. Other Early Mi-

ocene species Globoquadrina dehiscens (Chapman, Parr et
Collins) and Globoturborotalita cf. woodi (Jenkins) have
been found in the samples 39/85/N at the depth of 21.5 m
(Fig. 7). In the last sample at the depth of 25 m, Globoquad-

Fig. 6.

 Geological log of the Nowy Sącz-4 borehole. 1 — grey-

bluish calcareous mudstones, 2 — thin to thick-bedded glauconitic
sandstones, 3 — greenish-grey claystones, 4 — greenish and grey
calcareous mudstones, 5 — variegated shales, 6 — grey calcare-
ous shales, 7 — overthrust, 8 — inverse fault, 9 — samples.

Plate I:

 SEM microphotographs of selected planktonic foramini-

fers from the Zawada Fm.  Figs. 1, 34 — Globorotalia kingmai
Scott, Bishop et Burt, 


500; Fig. 1A — umbilical side; Fig. 1B —

spiral side, sample 42/85/N; Fig. 3 — side view; Fig. 4 — umbili-
cal side, sample 36/85/N; Figs. 2, 5 — Globoquadrina dehiscens
(Chapman, Parr et Collins), sample 42/85/N; Fig. 2 — side view,


350; Fig. 5 — umbilical side, 


200; Figs. 67, 911 — Globoro-

talia praescitula 

Blow; Fig. 6 — spiral side, 


500, sample 42/85/

N; Fig. 7 — umbilical side, 


500, sample 36/85/N; Fig9 — side



500; Fig. 10 — umbilical side, 


350; Fig. 11 — umbilical



390, sample 36/85/N; Fig. 8 — Globigerinoides trilobus



500, sample 36/85/N. Scale bar = 50 


m. For specimens

3, 4, 6, 7, 8, 9 the same scale bar as in Fig.1.



background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               425

background image

426                                                                                          OSZCZYPKO et al.

background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               427

Plate II:

 LM microphotographs of selected calcareous nannoplankton from the Zawada Fm. Fig. 1. Discoaster druggii Bramlette et Wilcox-

on sample 36/85/N; Fig. 2. Discoaster druggii Bramlette et Wilcoxon sample 36/85/N; Fig. 3. Helicosphaera scisura Miller sample 40/85/N;
Fig. 4.

 Helicosphaera scisura Miller sample 40/85/N; Fig. 5. Sphenolithus conicus Bukry sample 40/85/N; Fig. 6. Sphenolithus conicus

Bukry sample 40/85/N; Fig. 7. Helicosphaera vedderi Bukry sample 40/85/N; Fig. 8. Helicosphaera vedderi Bukry sample 40/85/N; Fig. 9.

 conicus Bukry sample 36/85/N; Fig. 10. Sphenolithus conicus Bukry sample 36/85/N; Fig. 11. Helicosphaera euphratis sample

40/85/N; Fig. 12. Helicosphaera intermedia Martini sample 40/85/N; Fig. 13. Helicosphaera gertae Bukry sample 40/85/N; Fig. 14. Heli-

 gertae Bukry sample 40/85/N; Fig. 15. Helicosphaera gertae Bukry sample 40/85/N; Fig. 16. Cyclicargolithus floridanus (Roth

et Hay) sample 37/85/N; Fig. 17. Cyclicargolithus floridanus (Roth et Hay) sample 37/85/N; Fig. 18. Cyclicargolithus abisectus (Müller),
sample 36/85/N, Fig. 19. Ponthosphaera multipora (Kamptner) sample 39/85/N, Fig. 20. Ponthosphaera multipora (Kamptner) sample 39/
85/N; Fig. 21. Transversopontis pulcher (Deflandre) sample 36/85/N; Fig. 22. Transversopontis fibula Gheta sample 40/85/N; Fig. 23. Sphe-

 furcatolithoides Locker sample 40/85/N; Fig. 24. Zygrhablithus bijugatus (Deflandre) sample 36/85/N.

rina dehiscens

 is the most numerous among other Early Mi-

ocene species. Besides them and the Eocene planktonic spe-
cies the piritized Oligocene forms such as Tenuitellinata ci-

(Bolli) has been also found.

The age determinations based on the youngest foramin-

iferal species, so far recognized, indicate that deposits oc-
curring in the Nowy Sącz 4 borehole down from 12.8 m are
of the Early Miocene age, but not older than N 5 Zone, that
is the middle part of the Early Miocene (Berggren et al.
1995). Globorotalia praescitula seems to be the most sig-
nificant element of the foraminiferal fauna. This species is
known from many localities and from different environ-
ments throughout the world (Keller 1981; Jenkins 1977; Bi-
zon & Glaçon 1978; Scott et al.1990). According to Bolli &
Saunders (1985) its range is from N 5 to N 9 planktonic
zones. This taxon has also been reported by Olszewska in
the Ottnangian–Karpatian deposits in the Polish part of the
Carpathian Foredeep (Odrzywolska-Bieńkowa & Olszews-
ka 1996). Globoquadrina dehiscens also has its FO at the
beginning of the N 5 Zone. Chiloguembelitria samwelli and
Globigerinoides primordius 

are known to have their LO

within the Early Miocene (Bolli & Saunders 1985; Odrzy-
wolska-Bieńkowa & Olszewska 1996). Globorotalia king-

was described for the first time from the Altonian stage

of New Zealand, which is regarded as the uppermost Early
Miocene (Scott et al. 1990).

Taxonomic note

Globorotalia kingmai

 Scott, Bishop et Burt

Pl. I: Figs. 1, 3–4.

1990 Globorotalia kingmai G.H. Scott et al., p. 21–23, fig. 16.

Description: Test circular in outline, lobulate, with al-

most symmetrical outer margin. In axial orientation discoidal
with rounded or slightly compressed periphery. In the final
whorl 5 chambers, triangular on the umbilical side and cres-
cent on spiral side. The last chamber symmetrically arched
on the spiral side and distinctly convex on the umbilical side.
Inner whorls poorly visible. Sutures radial on the umbilical
side and curved on the other side. Aperture a low extraumbil-
ical arch with distinct lip.

Remarks: Our specimens are much smaller in size (about



m) than the holotype. Found in sample 36/85/N

and 42/85/N.

Calcareous nannoplankton.

 The examined samples yield

well preserved and diverse calcareous nannoplankton assem-
blages (Fig. 8), highly dominated by the reworked species, es-
pecially those of Middle/Late Eocene such as Chiasmolithus

(Bramlette et Sullivan), Chiasmolithus grandis (Bram-

lette et Riedel), Chiasmolithus oamaruensis (Deflandre), Dis-
coaster barbadiensis 

Tan, Discoaster bifax Bukry, Spheno-

lithus radians 

Deflandre. The level of reworking is the highest

in sample 36/85/N and reworked taxons represent more than
60 % of all determined species, whereas in samples 37/85/N,
38/85/N and 39/85/N it is decreasing considerably, reaching
values not higher than approximately 20–30 %.

The autochthonous assemblage is dominated by Cyclicar-

golithus floridanus 

(Roth et Hay), Cyclicargolithus abisectus

(Müller), Coccolithus pelagicus (Wallich) and Sphenolithus

Bukry whereas Sphenolithus belemnos Bramlette et

Wilcoxon, Helicosphaera gertae Bukry, Helicosphaera in-

Martini, Helicosphaera scisura Miller, Discoaster


 Bramlette et Wilcoxon are less common.

The Miocene nannoplankton zonation is mainly based on

the last (LO) or first occurrence (FO) of Discoaster and thus
is easily accomplished in low latitudes, where discoasters are
common in open ocean assemblages. However, these typical-
ly warm water and open oceanic species are rare or absent in
the higher latitudes and in assemblages from marginal seas.
All the other marker species belong to genera that are more
common or even restricted to low latitudes and thus the zo-
nation is most reliable and correlable over wide distance in
low latitudes only.

The zone assignment of the described section is based on a

continuous range of Sphenolithus conicus and Sphenolithus

followed by the FO of Discoaster druggii. The FO

of Discoaster druggii is the biostratigraphic event marking the
lower boundary of the NN 2 Zone. The upper boundary of the
NN 2 Zone is usually marked by the LO of Triquetrorhabdu-
lus carinatus 

Martini, which was not found in the assemblages

from the Nowy Sącz 4 section. The absence of this species
may be due to poor preservation of the whole assemblage.
However, at the same time, we cannot exclude the possibility
of the presence of the NN 3 Zone.

It is also necessary to discuss the biostratigraphic ranges of

Reticulofenestra pseudoumbilica

Sphenolithus belemnos and

Helicosphaera vedderi 

Bukry. According to the standard zona-

tion of Martini (1970) and Martini & Worsley (1970) the first
occurrence of Reticulofenestra pseudoumbilica (Gartner) takes
place in NN 5. However, in the Intra- and Extra-Carpathian ar-
eas of Romania the FO of Reticulofenestra pseudoumbilica co-


background image

428                                                                                          OSZCZYPKO et al.

Fig. 7.

 Distribution of selected foraminifers of the Zawada Fm. in the Nowy Sącz-4 borehole. X — autochthonous species, R — reworked

species. Grey stripe — biostratigraphically important species. For other explanations see Fig. 6.

incides with the FO Discoaster druggii (Marunteanu 1991),
which corresponds with the lower limit of NN 2 Zone. The bios-
tratigraphic range of Helicosphaera vedderi is also problematic.
This taxon was reported by Bukry (1973, 1975) from his zones
CN 3 and CN 4, though, according to Theodoridis (1984), Heli-
cosphaera vedderi 

ranges from as low as his Eu-discoaster

druggii Subzone. The Eu-discoaster Subzone of the “Integrated
Miocene Zonation” corresponds to the lower part of NN 2 Zone.
Finally, the FO of Sphenolithus belemnos, used by Bukry to de-
fine the base of his Sphenolithus belemnos Zone, is usually
found slightly below the LO of Triquetrorhabdulus carinatus.
which is in contradiction to Martini & Worsley (1970), who
placed the FO of this species as low as NN 1 Zone. In conclu-
sion, it can be said that the calcareous nannoplankton from the
Zawada section belongs to zone NN 2, but the presence of the
lower part of NN 3 Zone cannot be excluded.

Lithostratigraphic correlation

In our previous papers (Oszczypko 1973; Blaicher & Osz-

czypko 1975; Birkenmajer & Oszczypko 1989; Oszczypko et
al. 1990 and Oszczypko & Wójcik 1992) the youngest depos-
its penetrated in the Nowy Sącz I borehole and deposits from
the Biegonice and Zawada sections were assigned to the
Malcov Formation. In the light of new geological and bio-
stratigraphic data obtained from borehole Nowy Sącz 4 and
from re-examinations of the samples from Biegonice (Malata
in Oszczypko et al. 1990), the authors decided to revise their
previous view. Our new suggestions are as follows:

1) The deposits cropping out in the Biegonice and Zawada

sections as well as in the Nowy Sącz 4 borehole (Figs. 2, 3,
5, 6) reveal the same facies-lithological development, age
and tectonic position. A common feature of these deposits is

background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               429

Fig. 8.

 Distribution of calcareous nannofosils in the Nowy Sącz-4 borehole. X — determined species, R — reworked species. Grey stripe — biostratigraphically important species. For other

explanations see Fig. 6.

background image

430                                                                                          OSZCZYPKO et al.

Fig. 9.

 Lithostratigraphy of the Magura Nappe in Poland (after Oszczypko 1992, supplemented). 1 — pelagic shales, 2 — pelagic marls, 3 —

hemipelagic variegated shales, 4 — distal limy turbidites, 5 — distal turbidites, 6 — thick-bedded carbonate turbidites, 7 — channel fan tur-
bidites (muscovite), 8 — channel fan turbidites (glauconite), 9 — black shales and hornstones, 10 — tuffites, 11 — lithostratigraphic unit
(see Birkenmajer & Oszczypko 1989; Oszczypko 1991): 1 — Hulina Fm., 2 — Malinowa Fm., — Hałuszowa Fm. and Kanina Beds, 4 —
Jaworzynka Beds, 5 — Ropianka Beds, 6 — Mutne and Łyska sandstones, 7 — Szczawina Sandstones, 8 — Jarmuta Fm., 9 — Szczawnica
Fm., 10 — Łabowa Fm., 11— Beloveža Fm., 12 — Zarzecze Fm., 12a — Krynica Sandstone Mb., 13 — Bystrica Fm., 14 —  eleźnikowa
Fm., Magura Fm., 15a — Piwniczna Mb., 15b — Maszkowice Mb., 15c — Mniszek Mb., 15d — Poprad Mb., 16 — Cię kowice Sandstone,

 — Pasierbiec Sandstone, 18 — Zembrzyce (Sub-Magura) Beds, 19 — Malcov Fm., 19a — Leluchów Marls Mb., 19b — Smereczek (Me-

nilite) Mb., 20 — Wątkowa Sandstone, 21 — Budzów (Supra-Magura) Beds, 22 — Zawada Fm., 23 — Stare Bystre Beds.

background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               431

the presence of the thick-bedded glauconitic sandstones and
medium- to thick-bedded marls suggesting their facies con-
nection with the glauconitic development, typical for the
northern part of the Magura Basin. On the other hand, the
Malcov Fm. and older formations of the Rača Subunit are
rather related to the muscovite (southern) development (see
Oszczypko 1973).

2) We propose to establish the Zawada Formation as a new

lithostratigraphic unit.

3) The Zawada Fm. differs from the Malcov Fm. both in

facies-lithological development and in age.

4) The relationship between these two formations is not

clear due to the lack of exposures (Figs. 2, 3, 4, 5). In the
Biegonice section the lower boundary of the Zawada Fm. is
probably of tectonic origin (Fig. 3), whereas in the more
eastern area the Zawada Fm. probably overlaps the Malcov
Fm. (see Figs. 4, 5). This superimposed position of the
Zawada Fm. over the Malcov Fm. could have either a prima-
ry (sedimentological) or a secondary (tectonic) character.

5) In all locations the Zawada Fm. occurs above the Late

Eocene–Oligocene deposits of the Rača Subunit and beneath
the Bystrica Subunit frontal thrust (Figs. 2, 3, 4, 5).

Structural and paleogeographical implications

The Outer Carpathian Flysch Belt could be subdivided into

two groups (Ksią kiewicz 1977; Săndulescu 1988; Plašienka
et al. 1997): the Krosno-Menilite (Moldavian) nappes in the
north and the Magura Nappe in the south. The Magura
Nappe is traditionally regarded as an Oligocene accretionary
wedge (Săndulescu 1988; Oszczypko 1992; Oszczypko
1997), overthrust onto the Krosno-Menilite zone (Molda-
vides sensu Săndulescu 1988) — an Early/Middle Miocene
accretionary wedge.

Our latest investigations in the Nowy Sącz area have given

the possibility for better definition of the Magura Nappe de-
velopment in Poland. This nappe was completely uprooted
from its substratum along the ductile Upper Cretaceous var-
iegated shales. At the southern margin of the Mszana Dolna
tectonic window the Cenomanian-Albian spotty shales are
locally preserved (Fig. 9). From the Campanian to the Late
Eocene the Magura Basin was dominated by the deep-water
turbiditic deposition. At the turn of Eocene the bottom of the
Magura Basin was partly inversed. It was probably the result
of both the submarine folding of the Krynica, Bystrica and
Rača subunits and a global fall of the sea level (Fig. 9, see
also Haq et al. 1987). This event was followed by an Early
Oligocene subsidence and intensive deposition in the north-
ern part of the basin (Siary zone).

The occurrence of the folded Lower Miocene marine depos-

its, discovered by the present authors in the Nowy Sącz area,
requires some modification to the previous opinions
(Ksią kiewicz 1977; Săndulescu 1988; Oszczypko 1992;
Jiříček & Seifert 1990; Kováč et al. 1989). For later consider-
ation it is very important to recognize the relationship between
the Lower Miocene Zawada Fm. and the Upper Eocene–Low-
er Oligocene Malcov Fm. If we exclude tectonic contact be-
tween these two formations there are two possible explana-
tions: sedimentological transition or erosional boundary.

Taking into account the lack of information about the Upper
Oligocene and the lowermost Miocene (NN 1 Zone) deposits
in the Nowy Sącz area, the erosional hiatus between these two
formations (Fig. 9) is more probable than the continuous depo-
sition in the Magura Basin suggested by Cieszkowski (1992).
Having accepted our thesis, it is possible to suggest the fol-
lowing paleogeographical scenario (Fig. 10): after the Middle
Oligocene folding, the Magura Nappe was formed and thrust
towards the north onto the terminal Krosno-Menilite flysch
basin (see Andreyeva-Grigorovich & Gruzman 1994; Oszc-
zypko 1997, 1998; Kováč et al. 1998). During the Burdigalian
high stand of the sea level (see Haq et al. 1987), part of the
Magura Nappe was flooded by marine transgression and the
Zawada Fm. was deposited in the Rača Zone (Fig. 10). This
flooding probably affected only depressed parts of the already
formed Magura Nappe. The Early Miocene planktonic fora-
minifers from the Zawada Fm. do not indicate the depth of the
sea because these species are known both from neritic deposits
(Scott 1972; Scott et al. 1990) and from bathial depths (Keller
1981). At that time the seaway connection with the Vienna Ba-
sin via Orava (see Cieszkowski 1992) was probably estab-
lished (Fig. 10). At the same time another seaway connection
between the residual flysch basin and the Fi akovo/Petervására
Basin via the East Slovak Basin existed (see Sztano 1994;
Halasová et al. 1996; Kováč & Zlinská 1998). The Zawada
Fm. is characterized by a significant amount of reworked fora-
miniferal fauna and nannoplankton mostly from the Middle
Eocene pelagic facies. This fact suggests erosion of the uplift-
ed part of the northern zone of the Magura Basin (?Fore-
Magura). The deposition of the Zawada Fm. could be more or
less simultaneous with deposition of the Gorlice Beds, which
contain blocks derived from the front of the Magura Nappe
(Jankowski 1997). In the more external part of the basin, the
Upper Krosno and Polyanitsa Beds were deposited (see Ślęzak
et al. 1995; Koszarski et al. 1995; Andreyeva-Grigorovich et
al. 1997). During the Ottnangian and after deposition of the

Fig. 10.

 Palinspastic sketch-map of the Carpathian Foreland Basin

during the Early Burdigalian (Eggenburgian) (after Oszczypko
1997, supplemented); 1 — North European land, 2 — nerithic and
bathyal deposition, 3 — shallow marine deposition, 4 — Car-
pathian land, 5 — recent Carpathian front, 6 — active thrust, 7 —
possible seaways, 8 — zero line of Wise’s vectors, 9 — cross-sec-
tion; Abbreviations: PKB — Pieniny Klippen Belt; M — Magura
Nappe; D — Dukla Unit; S — Silesian Unit; ZD — Ždánice Unit;
SS — Subsilesian Unit; SK — Skole Unit; BP — Boryslav —
Pokuty Unit.

background image

432                                                                                          OSZCZYPKO et al.

Krepice Fm. (Moravia, Krhovský et al. 1995) Vorotyshche
Fm. (Ukraine, Andreyeva-Grigorovich et al. 1997) and Salt
Fm. (Romania, Micu 1982) the Outer Carpathians were finally
folded and uplifted.


1) The youngest, marine, folded deposits of the Magura

Nappe belong to the Early Miocene (N 5, NN 2–3 zones) and
are of the same age as the youngest strata of the Silesian and
Skole units (Upper Krosno Fm.).

2) These turbidite deposits are developed in glauconitic fa-

cies which is characteristic of the northern, marginal, part of
the Magura Basin.

3) In the Nowy Sącz area (Rača Subunit) the Lower Mi-

ocene strata of the Zawada Fm. probably overlapped, with
erosional hiatus, the older Eocene-Oligocene Magura accre-
tionary wedge.

4) The Early Miocene Magura Basin was relatively deep

and reached the upper/?middle bathyal depths.

5) This basin was connected with the Lower Miocene re-

sidual flysch basin which occupied the sedimentary area of
the Silesian-Subsilesian and Skole units.

6) In the middle part of the Magura Nappe a seaway con-

nection was established between the residual flysch basin
and the Vienna Basin via the Orava area during the Early Mi-
ocene period.


Andreyeva-Grigorovich A. & Gruzman A.D., 1994: The biostrati-

graphic basis of the Paleogene-Neogene boundary in the Cen-
tral (Ukrainian Carpathians) and Eastern (Black Sea
Depression, Northern Caucasus) Paratethys. Geol. Carpathi-

, 45, 6, 333–342.

Andreyeva-Grigorovich A., Kulchytsky Y.O., Gruzman A.D., Lozy-

nyak P.Y., Petrashkevich M.I., Portnyagina L.O., Ivanina A.V.,
Smirnov S.E., Trofimovich N.A., Savitskaya N.A. & Shvareva
N.J., 1997: Regional stratigraphic scheme of Neogene forma-
tions of the Central Paratethys in the Ukraine. Geol. Carpathi-

, 48, 2, 123–136.

Berggren W.A., Kent D.V., Swisher C.C. & Aubry M.P., 1995: A

revised Cenozoic geochronology and chronostratigraphy.
SEPM Spec. Publ

., 54, 129–212.

Birkenmajer K. & Oszczypko N., 1989: Cretaceous and Paleogene

lithostratigraphic units of the Magura Nappe, Krynica Sub-
unit, Carpathians. Ann. Soc. Geol. Pol., 59, 145–181.

Bizon G. & Glaçon G., 1978: Morphological investigations on the

genus  Globorotalia from Site 372. Init. Repts. DSDP, 42,

Blaicher J. & Sikora W., 1967: Stratigraphy of the Rychwald Unit

at Leluchów. Kwart. Geol., 11, 4, 453–454 (in Polish).

Blaicher J. & Oszczypko N., 1975: The Malcov Beds in the Nowy

Sącz Depression (Polish Middle Carpathians). Proceedings of
the Xth Congress CBGA, 1973, GÚDŠ, Bratislava, Stratigra-
phy and Paleontology,


Bolli H.M. & Saunders J.B., 1985: Oligocene to Holocene low lat-

itude planktic foraminifera. In: Bolli H.M., Saunders J.B. &
Perch-Nielsen (Eds.): Plankton Stratigraphy. Cambridge
University Press,

 Cambridge, 155–262.

Bukry D., 1973: Low-latitude coccolith biostratigraphic zonation.

Init. Repts. Deep Sea Drill. Proj

., 15, 127–149.

Bukry D., 1975: Coccolith and silicoflagellate stratigraphy north-

western Pacific Ocean, Deep Sea Drilling Project Leg 32.
Init. Repts. Deep Sea Drill. Proj

., 32, 677–701.

Cieszkowski M., 1992: Marine Miocene deposits near Nowy Targ,

Magura Nappe, Flysch Carpathians (South Poland). Geol.

, 46, 6, 339–346.

Garecka M. & Olszewska B., 1998: Biostratigraphy of the Early Mi-

ocene of the Southern Poland based on planktic foraminifera
and calcareous nannoplankton. Przegl. Geol., 8/2, 712–721.

Geroch S. & Nowak W., 1984: Proposal of zonation for the Late

Tithonian–Late Eocene, based upon arenaceous foraminifera
from the Outer Carpathians, Poland. Benthos ‘83Second In-

Symp. Benthic Foraminifera (Pau, 1983), Elf Aquitane,

Esso REP, Total CFP, Pau et Bordeaux, 225–239.

Halasová E., Hudačková N., Holcová K., Vass D., Elečko M. &

Pereszlenyi M., 1996: Sea ways connecting the Fi akovo/Pe-
tervasara Basin with the Eggenburgian/Burdigalian open sea.
Slovak Geol. Mag.

, 2, 124–136.

Haq B.U., Hardenbol J. & Vail P.R., 1987: Chronology of fluctuat-

ing sea levels since the Triassic. Sciences, 235, 1156–1167.

Jankowski L., 1997: Gorlice Beds — the youngest deposits of the

southern part of Silesian Unit (Southern Poland) (in Polish).
Przegl. Geol.

, 3, 305–308.

Jiříček R. & Seifert P., 1990: Paleogeography of the Neogene in Vi-

enna Basin and adjacent part of the Foredeep. In: Minaříková
D. & Lobitzer H. (Eds.): Thirty years of geological cooperation
between Austria and Czechoslovakia

. Prague, 89–105.

Jenkins D.G., 1977: Lower Miocene planctonic foraminifera from

a borehole in the English Channel. Micropaleontology, 3,

Keller G., 1981: The genus Globorotalia in the Early Miocene of

the Euqetorial and Northwestern Pacific. J. Foramin. Res.,
11, 2, 118–132.

Koszarski L., Sikora W. & Wdowiarz S., 1974: The Flysch Car-

pathians. In: Mahe  M. (Ed.): Tectonics of the Carpathian-
Balkan regions

GÚDŠ, Bratislava, 180–197.

Koszarski A., Koszarski L., Ślęzak J. & Iwaniec M., 1995: Calcar-

eous nannoplankton from the terminal deposits of the Silesian
Nappe, Polish Flysch Carpathians: stratigraphic implications.
In: Flores J.A. & Sierro F.J. (Eds.): 5th INA Conferenze in
Salamanca Proceedings,


Kováč M. & Zlinská A., 1998: Changes of paleoenvironment as a

result of interaction of tectonic events and sea level oscilla-
tion in the East Slovakian basin. Przegl. Geol., 5, 403–409.

Kováč M., Baráth I., Holický I., Marko F. & Túnyi I., 1989: Basin

opening in the Lower Miocene strike-slip zone in the SW part
of the Western Carpathians. Geol. Zbor. Geol. Carpath., 40, 1,

Kováč M., Nagymarosy A., Oszczypko N., Ślączka A., Csontos L.,

Marunteanu M., Matenco L. & Márton E., in press: Palinspas-
tic reconstruction of the Carpathian-Pannonian region during
the Miocene. In: Rakús M. (Ed.): Geodynamic development of
the Western Carpathians, Geol. Survey of Slovak Rep., 



Krhovský J., Bubík M., Hamršmíd B. & Š astný M., 1995: Lower

Miocene of the Pouzdřany Unit, The West Carpathian Flysch
Belt, Southern Moravia. In: Hamršmíd B. (Ed.): New results
in Tertiary of West Carpathians II

, Hodonín, 73–83.

Ksią kiewicz M., 1966: Geology of the Babia Góra region. Przew.

39 Zjazdu Pol. Tow. Geol., Inst. Geol.,

 Warszawa, 5–59 (in


Ksią kiewicz M., 1977: The tectonics of the Carpathians. In:

Po aryski W. (Ed.): Geology of Poland, 4-Tectonics, Inst.

 Warszawa, 476–618.

background image

THE LOWER MIOCENE DEPOSITS OF THE RAČA SUBUNIT                                               433

Ksią kiewicz M. & Leško B., 1959: On relation between the Kros-

no-and Magura-Flysch. Bull. Acad. Pol. Sci., Ser. Sci. Chim.,
Geol., Geogr

., 7, 10, 773–780.

Martini E., 1971: Standard Tertiary and Quaternary calcareous nan-

noplankton zonation, II. In: Farinacci A. (Ed.): Proc. II Plank-
tonic Conf. Roma 1970

, Edizioni Tecnoscienza, Rome,


Martini E., 1981: Nannoplankton in der Ober-Kreide, im Alttertiar

und im tieferen Jungtertiar von Suddeutschland und dem an-
grenzenden Osterreich. Geol. Bavarica, 82, 345–356.

Martini E. & Worsley T., 1970: Standard Neogene calcareous nan-

noplankton zonation. Nature, 225, 289–290.

Martini E. & Müller C., 1986: Current Tertiary and Quaternary cal-

careous nannoplankton stratigraphy and correlations. Newslett.

., 16, 2, 99–112.

Marunteanu M., 1991: Distribiution of the Miocene calcareous nan-

nofossils in the Intra- and Extra-Carpathian areas of Romania.
In: Hamršmíd B. & Young J. (Eds.): Proceedings 4th INA Con-
ference in Prague, 


Micu M., 1982: Explanatory notes to lithotectonic profiles of Mi-

ocene Molasses from Central Moldavia (Eastern Carpathians,
Romania). In: Lűtzner H. & Schwab G. (Eds.): Tectonic regime

  Molasse EpochsVeröff. Zentralinst. Physik der Erde, 66,


Nemčok J., 1961: Origin and filling of depressions of Magura Fly-

sch, Eastern Slovakia. Geol. Sbor. Slov. Akad. Vied, 12, 2, 175–
190 (in Slovak).

Nemčok J., 1985: Geological map of Pieniny, Cergová, Lubovnian-

ská a Ondavská Vrchovina, 1:50,000. GÚDŠ, Bratislava.

Odrzywolska-Bieńkowa E. & Olszewska B., 1996: Fauna—Inverte-

brates; Order Foraminiferida Eichwald 1830. In: Malinowska
L. & Piwocki M. (Eds.): Geologic structure of Poland, T III:
Atlas of index and characteristic fossils. Część, 3a, 2, 530–613
(in Polish).

Okada H. & Bukry D., 1980: Supplementary modification and intro-

duction of code numbers to the low-latitude coccolith biostrati-
graphic zonation. Mar. Micropaleontol., 5, 3, 321–5.

Olszewska B., 1997: Foraminiferal biostratigraphy of the Polish

Outer Carpathians: a record of basin geohistory. Ann. Soc.
Geol. Pol.,

 67, 2–3, 325–338.

Oszczypko N., 1973: The geology of the Nowy Sącz Basin (The

Middle Carpathians). Biull. Inst. Geol., 273, 101–190.

Oszczypko N., 1991: Stratigraphy of the Paleogene deposits of the

Bystrica Sub-unit (Magura Nappe, Polish Outer Carpathians).
Biul. Acad. Pol. Sci., Earth Sci

., 39, 4, 415–431.

Oszczypko N., 1992: Late Cretaceous through Paleogene evolution

of Magura Basin. Geol. Carpathica, 43, 6, 333–338.

Oszczypko N., 1997: The Early-Middle Miocene Carpathian periph-

eral foreland basin (Western Carpathians, Poland). Przegl.

., 10/2, 1054–1063.

Oszczypko N., 1998: The Western Carpathians Foredeep-develop-

ment of the foreland basin in front of the accretionary wedge
and its burial history (Poland). Geol. Carpathica, 49, 6, 1–18.

Oszczypko N., Dudziak J. & Malata E., 1990: Stratigraphy of the

Cretaceous through Palaeogene deposits of the Magura Nappe
in the Beskid Sądecki Range, Polish Outer Carpathians. Stud.
Geol. Pol.,

 97, 109–181.

Oszczypko N. & Wójcik A., 1992: Detailed geological map of Po-

land, Nowy Sącz sheet. Państ. Inst. Geol., Warszawa.

Oszczypko N., Olszewska B., Ślęzak J. & Strzępka J., 1992: Mi-

ocene marine and brackish deposits of the Nowy Sącz Basin
(Polish Western Carpathians) — New lithostratigraphic and
biostratigraphic standarts. Bull. Pol. Acad. Sci., Earth Sci., 40,

Oszczypko M., 1996: Calcareous nannoplankton of the Globigerina

Marls (Leluchów Marls Member), Magura Nappe, West Car-
pathians. Ann. Soc. Geol. Pol., 66, 1–15.

Oszczypko-Clowes M., 1998a: Late Eocene–Early Oligocene cal-

careous nannoplankton and stable isotopes (






O) of the

Globigerina Marls in the Magura Nappe (West Carpathians).
Slovak Geol. Mag.

, 4, 2, 107–120.

Oszczypko-Clowes M., 1998b: Late Eocene–Early Oligocene de-

posits of the Magura Nappe (West Carpathians, Poland). Ab-
stracts of XVIth Congress CBGA

, Vienna 1998, 447.

Plašienka D., Grecula P., Putiš M., Hovorka D. & Kováč M., 1997:

Evolution and structure of the Western Carpathians: an over-
view. In: Grecula P., Hovorka D. & Putiš M. (Eds.): Geological
evolution of the Western Carpathians

Geol. Survey of Slovak


, Bratislava, 1–24.

Săndulescu M., 1988: Cenozoic tectonic history of the Carpathians.

In: Royden L.H & Horvath F. (Eds.): The Panonian Basin, a
study in basin evolution. AAPG Memoire, 45, 17–26.

Scott G.H., 1972: Revision of Hutchinsonian, Awamoan and Alto-

nian Stages (Lower Miocene, New Zealand). N.Z. J. Geol.

, 15, 49–70.

Scott G.H., Bishop S. & Burt B.J., 1990: Guide to some Neogene

Globorotalids (Foraminiferida) from New Zealand. N. Z. Geol.
Surv. Paleont. Bull.,

 61, 135.

Sztano O., 1994: The tide-influenced Petervasara Sandstone, Early

Miocene, Northern Hungary: Sedimentology, Paleogeography
and Basin Development. Geol. Ultraiectina Mededelingen
von Faculteit Aardwetenschappen Universiteit Utrecht

, 120,


Szymakowska F., 1966: Outliers of the Magura nappe in the Jasło

area and their relation with the Fore-Magura series. Rocz. Pol.
Tow. Geol

., 36, 1, 41–63.

Ślęzak J., Koszarski A. & Koszarski L., 1995: Calcareous nanno-

plankton stratigraphy of the terminal flysch deposits from the
Skole Nappe (Oligocene–Miocene, Polish Carpathians, Krosno
Beds). In: Flores J. A. & Sierro F.J. (Eds.): 5th INA Conferenze
in Salamanca Proceedings, 


Świdziński H., 1953: Flysch Carpathians between Dunajec and San

rivers. Region. Geol. PolskiPol. Tow. Geol., 1, 2, 362–418 (in

Świdziński H., 1961a: La Serie de Richvald dans les Karpates Fly-

sches. Bull. Acad. Pol. Sci., Ser. Sci. Geol. Geogr., 9, 2, 109–
119 (in Polish).

Świdziński H., 1961b: Observations geologiqueus dans les environs

de Leluchów, de Plavec. Ibidem, 99–107.

Theodoridis S.A., 1984: Calcarous nannofossils of the Miocene and

revision of the helicoliths and discoasters. Utrecht Micropale-
ont. Bull

., 32, 272.

ytko K., Gucík S., Ryłko W., Oszczypko N., Zając R., Garlicka I.,

Nemčok J., Eliáš M., Menčík E., Dvořák J., Straník Z., Rakús M.
& Matejovská O., 1989: Geological map of the Western Outer
Carpathians and their Foreland without Quaternary formation.
In: Poprawa D. & Nemčok J. (Eds.): Geological Atlas of the
Western Outer Carpathians

Państ. Inst. Geol., Warszawa.