background image












Department of Geology and Paleontology, Faculty of Science, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic


Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic


Department of  Physical and Historical Geology, Eötvös University, Múzeum krt. 4/a, 1088 Budapest, Hungary

(Manuscript received November 19, 1998; accepted in revised form March 17, 1999)


The evolution of the Danube Basin is closely related to the extrusion of the Western Carpathian and

Transdanubian Central Range lithospheric fragments from the East Alpine collision zone and to the Middle Miocene
back-arc extension, associated with the formation of the Pannonian Basin System. Deposits of the Eggenburgian
marine transgression, reaching the Danube Basin broader area through the Alpine and Carpathian Foredeep, can be
correlated with transgressive depositional system of the TB 2.1 cycle of Haq (1991). The transgressive sequence
passes upwards into highstand, neritic to upper bathyal sedimentation. The Ottnangian marine and part of the anoxic
and brackish sediments represent the falling stage deposition. The lowstand deposition which can be correlated with
the TB 2.2 cycle of Haq (1991) appeared still in the Ottnangian, during the compressive tectonic event resulting in
closure of smaller basins. Later, during the Karpatian, sedimentation of  transgressive and highstand depositional
systems took place, still on the present Danube Basin northern margin (Blatné Depression, Bánovce Depression). The
high energy environment of the basin attained deep neritic to upper bathyal depth. The angular discordance between
the Karpatian and Badenian strata, very common absence of the Late Karpatian and Early Badenian deposits (proved
by micropaleontological data), as well as the presence of  sediments of this age in the Novohrad (Nógrád) Basin and
its equivalents in the Želiezovce Depression (Danube Basin) suggest absence of the marine TB 2.3 cycle of Haq
(1991) in most of the territory. The whole area of the Danube Basin was flooded by the sea during the Middle to Late
Badenian and Sarmatian. The sedimentation in the high energy environment of the neritic zone reflects two deposi-
tional cycles, which can be compared with the TB 2.4,  TB 2.5 and TB 2.6 cycles of Haq (1991). The Badenian cycle
started with the Middle Badenian rush  transgression  and highstand of the TB 2.4 cycle, followed by the Late Badenian
higstand (SB type 2) and falling stage in the Bulimina-Bolivina Zone. The Sarmatian cycle started by  a lowstand
characterized by Ammonia rich assemblages on the Badenian-Sarmatian boundary and was followed by a transgres-
sion and highstand which can be correlated with the TB 2.6 cycle of  Haq (1991). The Late Miocene shallow water
high energy brackish to delta-lake sedimentation in the north and deep water high energy environment in the central
and southern part represent equivalents of  the TB 3 Haq (1991) cycles.

Key words:

 Miocene, Western Carpathians, Danube Basin, paleogeography, relative sea-level changes.


The Danube Basin, represented by the Slovak Danube Low-
land and its southward continuation the Little Hungarian
Plain in Hungary is situated in Alpine-Carpathian-Pannonian
junction (Fig. 1). The basin is filled up by Neogene and Qua-
ternary deposits with a thickness of up to 8 km (Steininger et
al. 1985; Kilényi & Šefara 1989). Its pre-Neogene basement
is built up mainly of Central Alpine and Central Western
Carpathian units and a buried part of the Transdanubian Cen-
tral Range (Fuchs 1985; Fusán et al. 1987; Fülöp et al. 1987;
Dank & Fülöp 1990; Balla 1995; Keith et al. 1994). The
structural and paleostress analysis points to changes in its
structural  pattern during the Miocene and defines the type of
crustal shortening and/or extension in the area (Kováč et al.
1989a; Nemčok et al. 1989; Neubauer & Gesner 1990; Mar-
ko et al. 1990, 1991; Fodor et al. 1991, 1992; Pereszlényi et
al. 1993; Fodor 1995; Csontos et al. 1991, 1992; Ratschbach-
er et al. 1991a,b; Franko et al. 1992; Kováč et al. 1993a,b,
1994; Hrušecký et al. 1996; Milička et al. 1996). On the ba-

sis of the above mentioned facts, we can distinquish a change
from a transpressional to transtensional tectonic regime dur-
ing the Early Miocene characterized by NW-SE to N-S ori-
ented axis of the main compression, transtensional to exten-
sional tectonic regime during the Middle Miocene
characterized by a NE–SW oriented axis of main compres-
sion or a NW-SE to WNW-ESE oriented extension and W-E
to NW-SE oriented extension during the Late Miocene.

The structural, sedimentological, biostratigraphical and

paleoecological analysis of the basin fill also makes it possi-
ble to reconstruct the former shape of basin depocentres (Fig.
2), as well as the paleoenvironment, paleodepth and the pos-
sible connection  toward the world sea.


The Alpine collision led to the eastward extrusion of the

Alcapa microplate (Central Western Carpathians and Pelso
Unit) and it was accompanied by crustal shortening at the

background image

326                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY


. K










Neogene Volcanics
Neogene basins

Bohemian Massif

Western Carpathian internides

Carpathian and Alpine 


Eastern Alpine internides

Molasse Foredeep





































W e s te rn

C a r p a th ia n s
















A   - D

A   - D

see Fig.2

  1.)  Váh river valley

  2.)  Dobrá Voda Depression

  3.)  Blatné Depression

  4.)  Rišòovce Depression

  5.)  Komjatice Depression

  6.)  Central part of the Danube Basin

  7.)  SE part of the Danube Basin

       - Želiezovce Depression

  8.)  Bánovce Depression

  9.)  Northern part of the Bánovce 


10.)  Handlová Basin

11.)  Little Hungarian Plain

        - S part of the Danube Basin   



200 km



200 km


front of the plate (Fig. 2A). Before opening of the present
Danube Basin, the dextral shears and reverse faults in com-
pressive tectonic regime formed wrench fault furrow type ba-
sins  at the eastern margin of the Northern Calcareous Alps,
in the marginal part of the Central Western Carpathians and
in the Transdanubian Central Range (Kováč et al. 1989a,b,
1997; Marko et al. 1991, 1995; Fodor et al. 1992). The north-

ern part of the area (Váh river valley, Bánovce Depression)
was flooded by the sea transgrading from the Alpine and
Carpathian Foredeep during the Eggenburgian (Rögl &
Steininger 1983), while the southern part of the Danube Ba-
sin was an uplifted dryland.

Eggenburgian  littoral conglomerates and sandstones de-

posited in a relatively shallow sea are preserved on the sur-

Fig. 1.

 Geological position of the Danube Basin.


. K











background image


face in the Dobrá Voda Depression, Váh river valley and
Bánovce Depression (Gašparík 1969). Their material was de-
rived mainly from the Mesozoic rocks of the Northern Calcar-
eous Alps and Central Western Carpathians (Baráth 1993).
The Tatric crystalline complexes of the Alpine-Carpathian-
Pannonian junction were still buried, as is suggested by fis-
sion-track data, heavy mineral associations and pebble analy-
ses (Kováč et al. 1994; Uher & Kováč 1993; Baráth & Kováč
1989; Brestenská 1980; Seneš 1959). The basal clastic se-
quence passes upward into a pelitic, schlier type sequence.

The Eggenburgian in the northern margin of the  Danube

Basin and adjacent areas is defined biostratigraphically by
occurrence of the calcareous nannoplankton species Dis-
coaster druggii

 and Helicosphaera ampliaperta (Lehotayová

1977, 1984; Šutovská in Kováč et al.1991b). The first occur-
rences of both forms characterize the NN 2 Zone (sensu Mar-
tini 1971), a time interval aproximatelly from 21 to 19 Ma
(Berggren et al. 1995; Fornaciari & Rio 1996). In local Cen-
tral Paratethys stratigraphy (Cícha et al. 1983a,b) occurrence
of Uvigerina  posthantkeni Papp indicates the Eggenburgian
age for example in sediments of the Váh river valley (Salaj &
Zlinská 1991).

According to foraminiferal assemblages of the Eggenburg-

ian (dominating taxa are mentioned on Fig. 3) the deepest pa-
leoenvironment took place in the Vienna Basin (Cícha  1957;
Kováč & Hudáčková 1997) and in the Bánovce Depression,
in an upper bathyal facies (Brestenská 1975, 1977). A neritic
environment prevailed in the basin of the Váh river valley
(Cícha & Brestenská in Steininger & Seneš 1971), where the
deepest assemblages from lower neritic to upper bathyal
zone were described by Salaj & Zlinská (1991). The Hand-
lová and Horná Nitra Depressions represent a marginal part
of the Eggenburgian sea with an upper neritic, partly hyposa-
line environment (Gašparíková 1972).

Sediments in the Váh river valley contain only calcareous

nannoplankton assemblages with Discoaster druggii, Heli-
cosphaera scissura, Reticulofenestra pseudoumbilica


can refer to the lower part of the NN 2 Zone (Šutovská et al.
1993; Zlinská 1993b, 1995). However, the presence of
Chlamys gigas

 in the mollusc assemblages points to the up-

per part of this zone and refers to the Eggenburgian trans-
gression. The Eggenburgian schlier sediments in all of these
basins, with their highly diversified, relatively deep-water
faunas can be interpreted as highstand deposits. Therefore,
we correlate this sea level rise with the TB 2.1 cycle of glo-
bal sea level change (sensu Haq 1991) which continued into
the Ottnangian (Fig. 4) and is well documented in the Vienna
Basin (Kováč & Hudáčková 1997), in the Dobrá Voda De-
pression and in the Bánovce Depression.


Remnants of marine Ottnangian sediments on the eastern

flank of the Transdanubian Central Range (Várpalota Basin,
Kókay 1971) were regarded as  relicts of a new marine sea-
way from the Mediterranean via the “trans-Tethyan-Dinaride
corridor” (Rögl & Steininger 1983), but we cannot exclude
still existing marine connection with the Alpine foredeep. In

this case, sediments deposited during the Early Ottnangian
occurring only as remants in the NE part of the Vienna Basin,
near to Senica, where bryozoa-rich deposits of the NN 3
Zone similar to deposits in the Transdanubian Central Range
were found (Zágoršek et al. in press) and represent the de-
posits of the same sedimentary basin.

The Ottnangian marine ingressions  in the NN 3  nanno-

plankton zone also reached the area of the Novohrad
(Nógrad) Basin in the South Slovakia. The ingressions with
the same depocentres as in  the Late Eggenburgian can be
characterized by upper to lower neritic foraminiferal assem-
blages (Figs. 3, 4) and occurrence of nannoplankton species
Sphenolithus belemnos

 (Vass et al. 1987; Šutovská 1993).

This marine event can be regarded as a maximum flooding in
the Eggenburgian-Ottnangian sedimentary cycle.

In the Vienna Basin, Dobrá Voda, Blatné as well as in the

Bánovce depressions the sedimentation continued in partly
isolated basins, as  is documented by the anoxic sandy,
clayey Planinka Formation (Kováč et al. 1991b; Kováč et al.
1992) and anoxic and brackish aleuropelitic sequence in the
Bánovce Depression (Brestenská 1975, 1977, 1980; Milička
et al. 1994). Occurrence of fish remains and thecamoebs
characterizes  these deposits. The age of  both formations
(NN 3 Zone, sensu Martini 1971) is well-documented by the
occurrence of the calcareous nannoplankton species Spheno-
lithus belemnos

  (Lehotayová  1977; Šutovská in Kováč et al.

1991b) and represents starved highstand and falling stage

The Late Ottnangian compression in the front of the Alps

caused gradual desintegration of the western marine seaway.
In the southernmost part of the Vienna Basin brackish and
also terrestrial Ottnangian deposits occur along the south-
eastern flanks of the Eastern Alps, where gradual extension
initiated the subsidence (present Sopron Mts.). The coal-
bearing Brennberg Formation was deposited in the Landsee
Gulf on the  western margin  of the basin (Fülöp 1983; Ebner
& Sachsenhofer 1991; Pereszlényi et al. 1993).

The above mentioned facts make it possible to correlate

the marine Ottnangian sediments with the falling stage of the
cycle TB 2.1 of global sea-level changes (Haq 1991) and the
latter  lowstand period of the cycle TB 2.2 (Haq 1991),
which led to shallowing of the basin. The low oxic environ-
ment in addition to the relative sea-level fall may reflect hu-
mid climatic conditions.


The Karpatian change of the structural pattern and paleo-

geography (Fig. 2B) was accompanied by displacement and
tectonic subsidence along NE–SW oriented sinistral strike-
slip faults, which opened the present Vienna Basin and Blat-
né Depression in the NE part of the Danube Basin (Kováč et
al. 1993b, 1997a).

A transtensional tectonic regime widened the Blatné De-

pression southwards. The principal source of clastic material
of the Karpatian basal conglomerates (Biela 1978) and
Jablonica deltaic gravels were the Mesozoic rocks of the
Northern Calcareous Alps and Central Western Carpathian

background image

328                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY

nappes. At the same time, the unroofed Central Carpathian
crystalline complexes also started to be eroded (Kováč 1986;
Mišík 1986; Uher & Kováč 1993).

As a consequence of the Eastern Alps uplift and initial rift-

ing on the western margin of the Danube Basin coarse clastic
fans appeared  in the Hungarian Sopron area, in the Austrian
Landsee Gulf and Styrian Basin margins. They are represent-
ed by the alluvial Ligeterdö or Auwald gravels in the Land-
see–Sopron area (Tollmann 1985; Fülöp et al. 1983), while in
the Styrian Basin the deltaic and coal-bearing limnic Upper
Eibiswald Member as well as the fluviatile Sinnersdorf con-
glomerates were deposited (Kollmann 1965; Ebner & Sach-
senhofer 1991).

Further to the east–southeast, in the Hungarian part of the

Danube Basin non-marine clastic depocenters appear during

the pre-Badenian period. Two branches of  depocenters can
be traced. One along a NNE-SSW strike, parallel to the Mi-
hályi  Ridge (Nemeskolta, Csapod), another along a NE-SW
strike, parallel to the Rába lineament (Ikervár, Celldömölk,
Vaszar). A further major terrestrial depocenter can be traced
by seismic measurements below the Badenian deposits in the
central part of the Danube Basin, along NE-SW strike, from
Mosonszolnok to Šurany (Hrušecký et al. 1996). The sedi-
ment thicknesses in these little subbasins rarely exceed 400
metres, but exceptionally in its northern branch can reach a
thickness of 1000 metres.

This initial point of the subsidence in the Hungarian part of

the Danube Basin is not well determined. While some au-
thors suggest a full-marine sedimentation during the Karpa-
tian (Hámor 1988), others (Körössy 1987; Nagymarosy in

Fig. 2.

 Paleogeography and palinspastic reconstruction of the Danube Basin development during the Neogene. A — Eggenburgian, B —

Karpatian–Early Badenian, C — Late Badenian–Sarmatian, D — Pannonian.























































0        20       40 km

shallow - marine

deep - marine





Flysch zone


Pieniny Klippen Belt


Central Range

Northern Calcareous

Alpine - Carpathian


























































background image


Kováč et al. 1997a) described only terrestrial deposits be-
neath the marine Badenian. Unpublished micropaleontologi-
cal data of Nagymarosy and Horváth show, that no marine
microfossils older than Badenian occur beneath the Hungari-
an part of the Danube Basin.

Between the Ottnangian and Karpatian in the Vienna Basin

(Kováč & Hudáčková 1997), Dobrá Voda and Bánovce de-
pressions the anoxic environment changed rapidly to a well
aerated one. The Karpatian transgression is marked here by a
shallow-water hyposaline environment characterized by Am-

 assemblages (Kováč et al. 1991a;

Brestenská 1977). This horizon may be correlated with the
Medokýš Mb. (earlier name Rzehakia or Oncophora Beds) in
the Novohrad (Nógrád) Basin in South Slovakia, which also
contains Ammonia and Porosononion in indigenous assem-
blages (Holcová 1996). The “Oncophora Beds” can be corre-
lated generally with the Late Ottnangian (Papp et al. 1973),
but the coexistence of Rzehakia socialis- and Uvigerina gra-

-marker of the Karpatian time-interval in the Cen-

tral Paratethys is a specific feature of the Medokýš Mb.
(Cícha et al. 1983). The common occurrence of Heli-
cosphaera ampliaperta 

and Sphenolithus heteromorphus in

calcareous nannoplankton assemblages indicates the time in-
terval 18.3–16.4 Ma (Berggren et al. 1995). The Medokýš—
“Oncophora Beds” thus represent transgressive depositional
system of the cycle TB 2.2 (sensu Haq 1991).

The statistical evaluation of  the Karpatian foraminiferal

assemblages (Šutovská et al. 1993) points to marine connec-
tion between  the Outer Western Carpathian basins and Inner
Carpathian basins (Kováč et al. 1993a) during the migration
of Uvigerina graciliformis within the NN 4 nannoplankton
zone (sensu Martini 1971). This form occurs in the Várpalota
Basin (Transdanubian Central Range), Styrian Basin, Slove-
nia and represents evidence of a marine seaway via trans-
Tethyan-Dinaride corridor (Rögl & Steininger 1983).

The continuing subsidence of the Western Carpathian ba-

sins led to the evolution of a deep water environment during
the Early Karpatian. In the Novohrad (Nógrád) Basin, the
deepest upper bathyal assemblages have been found in the
Strháre-Trenč graben (Zlinská & Šutovská 1990). The Kar-
patian deposits with the upper bathyal assemblages overlie
the deepest Eggenburgian ones. Therefore, no shift of the ba-
sin depocentre from Eggenburgian to Karpatian is suspected.

Similarly, deep water-bathyal environment was document-

ed in the Bánovce Depression and Vienna  Basin belonging
to the same water circulation system in this time (Brzobohatý
1987; Brestenská 1980; Kováč et al. 1993a; Kováč &
Hudáčková 1997). In the northern part of  the Bánovce De-
pression assemblages with rotalids dominate (Fig. 3), where
Karpatian sediments overlie the Ottnangian ones. Lower ner-
itic agglutinated  assemblages dominate in the southern part
of the Bánovce Depression, where the Karpatian sediments
are transgress on the pre-Neogene basement. The Karpatian
fill of the Blatné Depression is also represented mostly by
lower neritic sediments. Most of the assemblages contain a
large amount of reworked Cretaceous and Paleogene fora-

It is supposed that the Karpatian foraminiferal assemblag-

es with agglutinated taxa  indicate similar paleoecological

conditions to the Eggenburgian Cyclammina–Bathysiphon
assemblages of the Vienna Basin (Kováč & Hudáčková
1997). According the data from the recent seas (Murray
1991), ecological interpretation of these assemblages is not
fully clear: cold, well-aerated condition may be expected
probably caused by transgression and highstand. Coexistence
of Helicosphaera ampliaperta and Sphenolithus heteromor-

 and the absence of Praeorbulina in the time interval

18.3–16.4 Ma, sensu Berggren et al. (1995), enables us to
correlate Karpatian transgression  with the global sea-level
rise in the cycle TB 2.2 (Haq 1991). Foraminiferal assem-
blages in all basins (with schlier sediments) record accelerat-
ed deepening and represent transgressive to highstand depo-
sitional systems.

The upper part of the Karpatian strata are missing because

the analysed sections in both the Danube and Novohrad
(Nógrád) basins do not include the “transgressive phase”
with Globigerinoides sicanus (=bisphericus)  typical of the
Carpathian foredeep during the Late Karpatian (Rögl 1986;
Cícha 1995; Andreyeva-Grigorovich et al. 1997). The same
horizon was  also not found in the Vienna Basin (Kováč &
Hudáčková 1997), but it is present in the East Slovak Basin
in pelites overlying the Karpatian salt deposits (Kováč &
Zlinská 1998). The above mentioned facts refer to erosion or
a hiatus during the Late Karpatian and the lowermost Bade-
nian (see below) in the Vienna, Danube and Novohrad
(Nógrad) basins during the TB 2.3 cycle (Haq 1991).

Early Badenian

The Early Badenian paleogeographical situation reflects

the Karpatian structural event (Fig. 2B). The steepening of
relief on the Danube Basin’s western margin was connected
with the uplift of the Central Alpine and Central Carpathian
units along the western part of the Pericarpathian lineament
(Leitha wrench zone). The Leitha Mts. and Malé Karpaty
Mts. became  part of an uplifted horst structure in the East
Alpine–Western Carpathian transition zone, partly disinte-
grated by NW-SE dextral strike-slips and N-S normal faults
(Marko & Uher 1992).

The Early Badenian (or Karpatian?) synrift extension in

the northern part of the Danube Basin was accompanied by
volcanic activity (Gnojek & Heinz 1993). The belt of  buried
volcanic bodies extends from the Styrian Basin along the
Rába lineament up to the Central Slovak Volcanic area (Lexa
et al. 1993).

In the Danube Basin, the oldest Badenian marine faunas

and biozones are not present (upper part of NN 4, Lower La-
genid Zone, Praeorbulina glomerosa Horizon), that is the
first marine beds belong to the Upper Lagenid Zone (Grill
1941) with orbulinas, that is to the younger part of the Early
Badenian. This means, that not only the pre-Badenian (Kar-
patian?), but also the earliest Badenian deposits are missing
or are of non-marine origin in the central part of the basin.

The non-marine pre-Badenian (Hungarian part of the

Danube Basin) can be characterized by red beds, coarse con-
glomerates indicating an anchi-metamorphic crystalline
source area. The occurrences are arranged into two zones,

background image

330                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY

similarly to the older Karpatian ones: one near to the north-
ern periphery of the Transdanubian Central Range, south of
the Rába lineament, and the other north of the Répce linea-
ment (Kováč et al. 1997a).

In the Danube Basin’s northern part, the late Early Bade-

nian marine paleoenvironment was documented only in
western and eastern margin of the Blatné Depression, where
the Ratkovce littoral sands, gravels and sandy clays deposit-
ed (Fig. 2).

From the late Early Badenian on, the subsidence of the

southern and central part of the Danube Basin accelerated
and the Badenian sea invaded a huge area, from the Bakony
Mts. to the elevated crystalline ridge at the Sopron Mts. The

Mihályi Ridge and its uplifted adjacent parts might have
formed a row of cliffs or a minor archipelago. The basin mar-
gins, at the northern flanks of the Bakony Mts. can be char-
acterized either by algal limestone or by coarse-clastic sedi-

The late Early Badenian sedimentary and volcanoclastic

sequence of the Želiezovce Depression situated in front of
the Transdanubian Central Range, might have been deposited
on a circalittoral open shelf plain (Seneš & Ondrejičková
1991). The basin form, as well as the rapid tectonic subsid-
ence (Vass et al. 1993), proved by the results of foreward
modelling (Lankreijer et al. 1995), suggest the activity of the
NW–SE oriented dextral and normal faults (Fig. 2).

Fig. 3.

 Species dominating in foraminiferal assemblages and their paleoecological interpretations in the Danube Basin.

upper neritic


fresh water









(Cicha, Brestenská, in 

Steiniger, Papp 1971,

Salaj, Zlinská 1991)



(Šutovská in

Kováè et al. 1991)








Báhoò,  Buèany)

























(Bernolákovo, Diakovce, Ivánka,

 Sereï, Zlaté  Moravce )

(Homola 1960, Jandová 1956,

Možišová 1953, Svoboda 1952)























Porosonion granosum 

(only in the southern part )
Large size Elphidium div.sp.

(only in the southern part).

Ammonia beccarii




Lenticulina cultrata, Planulina

wuellersdorfi, Uvigerina macrocarinata

high P/B ratio

small size Globigerina

Heterolepa dutemplei

Stillostomella div. sp.

agglutinated taxa Bathysiphon

filiformis, Cyclammina carpatica

Haplophragmoides vasiceki

(only northern part )

small size Ammonia

fish rests


1. Almeana osnabrugensis

Lenticulina, Spiroplectinella 


2.Uvigerina posthantkeni

high P/B ratio

agglutinated taxa

Spiroplectinella carinata

Bathysiphon, Haplophragmoides




large size

Elphidium div.sp.

Porosonion ex. gr. granosum








background image


The Early Badenian littoral sediments of the Styrian and

Eisenstadt basins, situated towards the west, belong to
former shallow sea embayments with algal and coral reef
system (Kollmann 1965; Tollmann 1955). In the intrabasinal
parts siltstone and shale deposited (Körössy 1987).

In the Danube Basin, foraminiferal assemblages with


 occur only together with Orbulina (Fig. 3) in

the Želiezovce Depression (Zlinská 1992a; Zlinská et al.
1997). The assemblages indicate lower neritic to upper
bathyal paleoenvironments (Jandová 1959a,b). Reworked
Early Badenian foraminifers were also determined in the
southern part of the Bánovce Depression (Brestenská & Le-
hotayová in Papp et al.1978). Occurrence of the Early Bade-

nian sediments with Orbulina sp. was also described from
the Nováky Basin by Gašparíková (personal communica-
tion), but the sediments may be younger than the Early Bade-

The late Early Badenian fill of the Želiezovce Depression,

containing well diversified foraminiferal assemblages with
high P/B ratio refer to the re-opening of the seaway (during
the migration of Orbulina) via trans-Tethyan-Dinaride  corri-
dor (Rögl & Steininger 1983).

On the basis of the age of FAD of Praeorbulina (16.4–16.5

Ma) and Orbulina (15.1 Ma) in the Mediterranean and Cen-
tral Paratethys (Berggren et al. 1995; Fornaciari & Rio
1996), only sediments with Praeorbulina can be clearly cor-

upper bathyal

lower neritic


(Modrany, Nová 

Vieska, Štúrovo)
(Homola 1960, 

Jandová 1959,

Brestenská in

 Papp et al. 1978)





(Bánovce nad 


Jiøíèek 1964,

Zapletalová 1964)




(Brestenská 1975, 1977, Lehotajová 1977)






Large size Elphidium div.

sp.(only in the southern 


Ammonia beccarii


Spiroplectinella z.

Lagenida zone 

with Orbulina

agglutinated taxa

Lenticulina cultrata,

small size 


highly diversified

high P/B ratio

agglutinated taxa


Bolivina /Bulimina



Eggerella scabra/

Ammonia beccarii

Large size 

Elphidium div.sp.

Elphidium div.sp.

Lobatula lobatula

agglutinated taxa

diversified : Bolivina, Lenticulina,

Uvigerina, Cibicidoides

high P/B ratio

Globigerina div. sp., Tenuitella angustiumbilicata

small size Ammonia + Porosonion ex gr. granosum
diatoms, Radiolaria, Thecamoeba,

fish rests
diatoms, Radiolaria, fish rests

Cibicidoides div. sp.
Lagenids (Lenticulina div. sp., Marginulina div. sp., )

Chillostomella ovoidea





?Orbulina sp.







(Nagymarosi and Horváth








Continuation of Fig. 3.

background image

332                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY

related with the transgression of the cycle TB 2.3 of global
sea-level changes (sensu Haq 1991). Due to the absence or
very  rare occurrence of Praeorbulina in the Danube Basin
and surrounding areas, in the biostratigraphical recognition
of the Early Badenian deposits, occurrences of Orbulina or
Uvigerina macrocarinata

 as well as some ecostratigraphical

criteria were often used (Jiříček 1969; Cícha et al. 1983b;
Homola 1960; Jandová 1959a,b). Although Orbulina refers
already to the transgression of the TB 2.4 cycle (sensu Haq

Middle–Late Badenian

The Middle and Late Badenian development of the

Danube Basin (Fig. 2C) was characterized by a wide synrift
subsidence controlled by whole lithospheric extension
(Kováč et al. 1993b, 1997; Lankreijer et al. 1995; Lankreijer
1996). In the northern part of the basin embayments of the

Blatné, Rišňovce and Komjatice depressions subsided or
opened, controlled mainly by activity of the NE–SW orient-
ed normal faults at this time (Kováč et al. 1993b, 1997a,b;
Keith et al. 1995).

The Middle Badenian subsidence in the Blatné Depression

was followed by accumulation of huge talus cones of con-
glomerates and breccias in the western and eastern part of the
depression (Baráth 1993). The Do any conglomerates consist
mostly of crystalline clastic material and were deposited in
alluvial to fluvial environments (Kováč et al. 1991). The sub-
siding central part of the depression was filled up mainly by
the pelitic Špačince Fm. passing northwards into deltaic
brackish Madunice sands deposited during the Late Badenian
(Vass et al. 1990; Jiříček 1990).

The subsidence of eastward situated grabens of the

Rišňovce and Komjatice depressions was followed by depo-
sition of sandy-clayey marine strata of the Pozba Formation.
The Middle to Late Badenian infill of the Komjatice Depres-
sion contains frequent tuffaceous admixture, tuffs, sand-

Fig. 4.

  Comparison of global sea-level changes (after Haq 1991) with  paleodepth changes (dark curve), interpreted for the Slovak part

of the Danube Basin. Interruption of the curve represents  erosion periods and the absence of the given sediments.

background image


stones and algal limestones, similar to the fill of the Želie-
zovce Depression (Vass et al. 1988, 1990; Nagy 1998).

The subsidence of the central part of the Danube Basin also

reflects the NE-SW to NNE-SSW oriented fault systems
(Gaža 1984; Pěničková & Dvořáková 1985). Southwards, the
activization of low-angle listric faults in extensional tectonic
regime led to widespread synrift subsidence (Tari et al. 1992;
Horváth 1993). The whole Transdanubian Central Range Me-
sozoic nappe system moved back from above the Lower and
Middle Austroalpine nappes, along a set of minor displace-
ment zones parallel to the Rába lineament (rejuvenated former
compressional thrust plains), thus causing basin widening.

The Middle to Late Badenian paleogeography shows the

same features as in the Early Badenian (Fig. 2C). However,
some trends of filling up of the basin can be observed at the
end of the Badenian epoch, such as the frequent occurrence
of sandstone bodies interfingering into pelagic siltstones, or
the formation of two belts of algal (rarely reef) limestone
patches along the margins of the basin (Friebe 1990). The
volcanoclastics of trachytic alkaline volcanism in the Pász-
tori region (central part of the basin) also played an impor-
tant role in filling up the basin, from the Late Badenian until
the Early Pannonian. Maximum sediment thicknesses of up
to 400 to 500 metres can be observed in the Szigetköz area,
near to the Hungarian-Slovak border, and in the Nemeskolta
and Csapod subbbasins.

Microbiostratigraphy of the Middle to Late Badenian in

the Danube Basin is based either on calcareous nannofossils,
or on the ecostratigraphical principles using Grill biozones
(Grill 1941; Jandová 1955, 1956, 1959a,b; Homola &
Slavíková 1955; Cícha 1958; Homola 1960a,b; Zapletalová
& Jiříček 1964; Jiříček 1969). The good applicability of
ecostratigraphy reflected stable paleoenvironmental condi-
tions in whole Central Paratethys during this time.

The Middle Badenian Spiroplectammina (Spiroplectinella)

carinata Biozone (Grill 1941; Zlinská & Čtyroká 1993; Zlin-
ská 1996a) corresponds to the top part of the nannoplankton
zone NN 5 and lower part of the NN 6 (sensu Martini 1971)
and is overlain by the Late Badenian Bolivina-Bulimina Bio-
zone (Grill 1941 ) corresponding to the upper part of NN 6
and  maybe to the basal part of NN 7. The sediments of Bo-
livina-Bulimina Biozone (Grill 1941 ) reflect stratification of
water masses in the Danube Basin and  are regarded as high-
stand deposits partly correlated to cycle TB 2.5 (sensu Haq
1991). The highstand system is characterized by low-oxic
environment similar to the Eggenburgian higstand deposi-
tional system of the TB 2.1 cycle in the Danube Basin’s
northern part.

Between the Early and Middle Badenian moderate shal-

lowing was interpreted for the SE part of  the Danube Basin
(Homola & Slavíková 1955; Zlinská 1993). Therefore, two
cycles of sea-level changes of the 4th-order may be interpret-
ed: the lower  for the uppermost part of the Early Badenian to
early Middle Badenian; the upper cycle for the late Middle

The Middle–Late Badenian sedimentation  in the Danube

Basin mostly finishes with deposition of hyposaline strata
with Ammonia. These assemblages developed gradually from
the assemblages of the Bolivina-Bulimina Zone. In the

Bánovce Depression, instead of  Ammonia,  Eggerella domi-
nates in hyposaline assemblages (Zapletalová & Jiříček

The Ammonia rich strata containing reworked species from

the underlying Late Badenian sediments of the Bulimina-Bo-
livina Zone also appear at the base of  the Sarmatian  in all
the Western Carpathian intramountane basins (Zlinská &
Fordinál 1992; Zlinská 1992b, 1997, 1998a; Hudáčková
1995; Kováč & Hudáčková 1997; Kováč & Zlinská 1998)
and therefore may represent lowstand  depositional systems
of cycle TB 2.6 (Haq 1991).


The brackish character of the Sarmatian sea was a conse-

quence of  disintegration and closing of the Badenian sea-
ways toward the Mediterranean and Indopacific ocean (Rögl
& Steininger 1983). The Sarmatian sea might have been
shallow, reaching upper neritic depth as  maximum (Fig. 4).

In the southern and part of the central part of the Danube

Basin (Little Hungarian Plain) narrow belt of brackish fish-
scale bearing shale, Elphidium- and Nonion-bearing schlier
represent the Sarmatian sedimentation. At the basin margins
sandy limestones and coarse clastics was deposited. The Sar-
matian deposits show a less areal distribution here than the
Badenian ones. The sporadic distribution and extremely
small thickness of the Sarmatian strata refers to basin inver-
sion in its southern part and as a consequence of this, to se-
lective erosion during the Late Sarmatian. Due to this ero-
sional period, the thickness of Sarmatian deposits rarely
exceeds 200 metres.

Although it is not visible on seismic sections, a minor sedi-

mentary gap needs to be supposed between the Badenian and
Pannonian deposits in the bulk of the area. Not postulating
an uplift and sub-aeric erosion one may suggest a slight sub-
marine uplift and erosional effect combined with a low rate
of deposition, since no clear evidence of sub-aeric erosion

In opposite to the central and southern parts of the basins,

an accelerated synrift subsidence characterized the evolution
of the subbasins, situated above the external zone of the
back-arc asthenosphere updoming (Kováč et al. 1997b). The
subsidence in partial depocentres (Rišňovce Depression) in
the northern margin of the Danube Basin reflected the active
elongation of the Western Carpathians due to a subduction
roll-back effect in front of the Eastern Carpathians (Vass et
al. 1990; Royden 1993; Lexa et al. 1993, 1995; Csontos &
Horváth 1995). The paleostress field with a NE–SW oriented
axis of the principal compression activized NE-SW to NNE-
SSW normal faults and the WSW–ENE oriented sinistral
strike slips allowing accelerated subsidence in the northern
embayments of the basin (Hók et al. 1995), where mostly
pelitic to sandy sedimentary  sequences were deposited dur-
ing the TB 2.6 cycle of global sea level changes (Haq 1991).

Microbiostratigraphy of the Sarmatian period is based on

the ecostratigraphic principles using Grill biozones (Grill
1941). As in the Badenian, good applicability of ecostratigra-
phy reflected stable paleoenvironmental conditions in all the

background image

334                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY

Western Carpathian intramountane basins during this time
(Zlinská 1993a; Fordinál & Zlinská 1994; Zlinská & Fordinál
1995; Hudáčková & Kováč 1993; Kováč & Hudáčková 1997).

The Early Sarmatian sediments contain large-size Elphidi-


div. sp., and sometimes Lobatula lobatula (transgressive

tract of TB. 2.6 cycle). The Middle Sarmatian is character-
ized by the dominance of Elphidium hauerinum and the Late
Sarmatian deposits are characterized by Porosononion gra-

  (highstand of TB 2.6. cycle). Sarmatian can be well

interpreted as one cycle of sea-level change, with a maxi-
mum paleodepth of  20–50 m. The shallowing of the marine
basin was connected with a further decrease of salinity in the
Late Sarmatian.


 During the Late Miocene a rapid subsidence took place

only in the axial part of the Danube Basin, represented by
Komjatice and Gabčíkovo depressions (Fig. 2D). The sedi-
mentation might have been connected with a second phase of
rifting and following thermal postrift subsidence of the back-
arc area, without a significant role for fault activity (Horváth
et al. 1986; Tari et al. 1992; Horváth 1993; Hrušecký et al.
1993; Lankreijer et al. 1995; Lankreijer 1998).

During the Pannonian  and Pontian (10.5–7.1 Ma), brackish

to lacustrine water masses invaded all previously emerged ar-
eas in the central and southern part of the Danube Basin, in-
cluding the previously uplifted Mihályi Ridge. Some consider-
ations show, that most of the Transdanubian Central Range
was probably flooded by the Pannonian lake. In the central
part of the brackish basin (Gabčíkovo Depression) an alternat-
ing clayey sandy sedimentation continued, reaching a maxi-
mum thickness of 4000–5000 metres (Buday et al. 1962;
Körössy 1987). It was filled up by sediments transported by
the rivers from the northern and northeastern periphery.

The sedimentation in the extensional grabens at the north-

ern margin (Slovakia) of the Danube Basin was influenced
by deltaic environment, forming marshes in the Blatné De-
pression, a limnic estuaryum in the Rišňovce Depression and
a delta-influenced embayment in the Komjatice Depression
(Jiříček 1990). Brackish sediments contain practically mono-
specific  Miliammina assemblages. The water depth did not
exceed 20 m (Fig. 4).

On the western edge of the Danube Basin (Sopron Mts.)

Gilbert-type deltas developed, gradually filling up the deep
basin depocentres with coarse clastic sediments. Seismic
sections prove that the paleodepth in the basin centre (Hun-
gary)  might exceed several hundred metres. Due to basin
isolation, only a very poor correlation with global sea level
changes can be presented: the lowstand depositional system
and transgressive depositional systems of the TB 3 cycle
(Haq 1991) can be supposed at the base of the Pannonian,
Zone A–B of Papp (1951; Papp & Steininger 1979); high-
stand depositional system may represent the Pannonian Zone
E (Papp 1951). By the beginning of the Pontian most of the
Danube Basin had been filled up by sediments.

Near to the boundary of the Late Miocene and Early

Pliocene, a rapid inversion took place in almost the whole

Alpine-Carpathian-Pannonian junction area, except the
Pliocene Gabčíkovo  and Komjatice depressions (Adam &
Dlabač 1969; Gaža 1984; Baráth & Kováč 1995). In this time
large accumulations of fluviatile and limnic gravels originat-
ed due to differences in the vertical movements of the West-
ern Carpathian orogene belt.


Danube Basin represents a polyhistoric basin, with its

Neogene fill deposited in various depocentres, differing in
origin and paleoenvironment. The basin development and
subsidence was strongly influenced by local tectonics but
also by relative and global sea-level changes (Haq 1991).

The Late Eggenburgian transgression can be observed in

the northern periphery of the basin, where a shallow water,
high-energy environment is passing to a deep water environ-
ment. It can be correllated with the global sea-level rise dur-
ing the TB 2.1 cycle of global sea level changes (sensu Haq
1991). The maximum paleodepth can be estimated as lower
neritic to upper bathyal zone. Highstand conditions also doc-
ument the Early Ottnangian marine flooding  of the area from
the Alpine foredeep, through the Transdanubian Central
Range to the Novohrad (Nógrád) Basin in South Slovakia
and North Hungary (the present Danube Basin was practical-
ly not present, because it opened during the Early Badenian).

The Late Ottnangian sea-level fall is documented by  grad-

ual shallowing and isolation of the basins which caused an
anoxic and partly brackish environment. The Ottnangian
lowstand deposition was followed by the Late Ottnangian–
Early Karpatian global sea-level rise during the TB 2.2 cycle
(sensu Haq 1991). The development of a deep water, high-
energy paleoenvironment was a result of sea-level rise and
tectonically controlled subsidence in the Blatné Depression
of  the Danube Basin. The paleodepth has been estimated as
neritic to shallow bathyal zone here.

The absence of the Late Karpatian and Early Badenian ma-

rine strata in most of the Danube Basin territory, as well as
the angular unconformity betwen the Karpatian and Bade-
nian strata in the northern part of the basin (Blatné Depres-
sion) led us to postulate, that the deposits corresponding to
the TB 2.3 cycle (sensu Haq 1991) are partly missing and its
sediments of the falling stage are present only in restricted
areas (e.g. Jablonica Conglomerates).

The late Early Badenian transgressive deposits corre-

sponding to the TB 2.4 cycle rest  directly on the Karpatian
highstand deposits of the TB 2.2. cycle (Haq 1991) or on the
pre-Neogene basement of the basin. Relative sea level rise
during the Middle Badenian Spiroplectammina Biozone
(Grill 1941) can be correlated with the transgression and
maximum flooding surface of the TB 2.4 cycle of global sea-
level changes (Haq 1991). The sedimentary environment can
be characterized by maximum paleodepth of neritic zone.

The Late Badenian highstand and falling stage during the

Bulimina-Bolivina Biozone (Grill 1941) can be correlated
with the TB 2.5 cycle (SB type 2) and  shows deep neritic,
low oxic conditions with stratified water column pronounced
in the whole Danube Basin. The following Ammonia rich

background image


beds reflect partial isolation and  slightly brackish condi-

 The nest cycle of relative sea level change started at the

Badenian-Sarmatian boundary and is characterized by a hy-
posaline paleoevironment. The Sarmatian strata show a
coastal onlap northwards, with a shallowing upward trend
and can be correlated partly with the TB 2.6. cycle of global
sea-level change (Haq 1991). The paleodepth did not exceed
the neritic zone.

The Pannonian isolation of the Danube Basin led to the de-

velopment of a brackish to lacustrine lake system. The global
sea level changes of the TB 3 cycle (Haq 1991) cannot be
correlated properly  with the local water level oscillations.


The authors express their gratitude to

the Grant 12172/97 and 407697 of the Slovak Academy of
Sciences and to the Institutional Project of the Department of
Geology and Paleontology of  Comenius University, Bra-
tislava, as well as to the Grant 266/96/B-Geo of Charles Uni-
versity Prague and OTKA T-017009 of the Hungarian gover-
ment for the financial support in the preparation of this paper.


Adam Z. & Dlabač M., 1969: Erklärungen zur Mächtigkeitskarte

und zur lithofaziellen Entwicklung der  Donau-Niederung. Zá-
pad. Karpaty, ZK,

 11, 156–171.

Andreyeva-Grigorovich A.S., Kulchytsky Y.O., Gruzman A.D., Lo-

zonyak P.Y., Petrashkevich M.I., Portnyagina L.O., Ivanina
A.V., Smirnov S.E., Trofimovich N.A. & Savitskaya N.A. et
al., 1997: Regional stratigraphic scheme of Neogene forma-
tions of the Central Paratethys of Ukraine. Geol. Carpathica,
48, 2, 123–136.

Balla Z., 1995: Basement tectonics of the Danube Lowlands. Geol.


, 45, 5, 271–281.

Baráth I. & Kováč M., 1989: Sedimentation conditions and  source

areas of the Eggenburgian clastics in the western  part of the
Western Carpathians. Knihovnička ZPN, 9, Misc. Micro-

IV, 55–86 (in Slovak).

Baráth I. & Kováč M., 1995: Sedimentology and paleogeography

of the Pliocene Hron river delta in the Komjatice depression
(Danube Basin). Miner. slovaca, 27, 4, 236–242.

Baráth I., 1993: Sedimentary conditions and source areas of  Lower

and Middle Miocene coarse clastics in the Alpine-Carpathian
junction zone. Manuscript, Geofond, Bratislava (in Slovak).

Berggren W.A., Kent D.V., Swisher III. C.C. & Aubry M.P.A., 1995:

Revised Cenozoic geochronology and chronostratigraphy. In:
Berggren W.A., Kent D.V. & Hardenbol J. (Eds.): Geochronol-
ogy, Time scale and Global stratigraphic correlations: A uni-
fied temporal framework for an historical geology. Soc. Econ.
Paleontol. Miner., Spec. Publ.

, 54, 129–212.

Biela A., 1978: Deep drillings in the Western Carpathian basins.

Reg. Geol.,

 10, 224.

Brestenská E., 1975: Microbiostratigraphy of sediments of the DB-

15 borehole, Horňany, Bánovce basin. Manuscript, Geofond,
Bratislava (in Slovak).

Brestenská E., 1977: Microbiostratigraphy of the Miocene of the

Bánovce basin. Manuscript, Geofond, Bratislava (in Slovak).

Brestenská E., 1980: Geological map and explanatory notes to  re-

gion of the Bánovská kotlina Basin 1:50,000. Manuscript,

, Bratislava (in Slovak).

Brzobohatý R., 1987: Comments on the Palaeogeography of the

Miocene basins of the Central Paratethys from the viewpoint
of otolit faunas. Knihovnička ZPN, 6b, Misc. Micropalaent., II/
2., 101–111.

Buday T., Cambel B. & Mahe  M. (Eds.), 1962: Explanations to

the geological map of ČSSR 1:200,000 Wien–Bratislava M-
33-XXXV, M-33-XXXIV. Geofond, Bratislava, 122–151 (in

Cícha I., 1957: Microbiostratigraphical investigation of Burdiga-

lian and Helvetian from intra-Alpine Vienna Basin. Zpr. Geol.
Výzk. v r. 1956,

 Praha , 26–28 (in Czech).

Cícha I., 1958: Microbiostratigraphical conditions of Neogene

from drillhole Cf in the Lakšárská N. Ves area. Geol. Práce,

 14,  92–106 (in Czech).

Cícha I., 1995: Development of the Neogene sediments in Central

Paratethys, new results. Knihovnička ZPN, 16, 67–72 (in

Cícha I., Krhovský J., Brzobohatý R., Čtyroká J., Daniel von C.H.,

Haunold Th., Horvath M., Luczkowska E., Reiser H., Rupp
Ch., Rijavec R. & Ewnger W., 1983a: Oligocene and Miocene

 from the Western and Central Paratethys. Utrecht

Micropaleont. Bull.,

 35,  121–181.

Cícha I., Zapletalová I., Molčíková V. & Brzobohatý R., 1983b:

Stratigraphical range of Eggenburgian-Badenian Foraminifera
in West Carpathian Basins. Knihovnička ZPN, 4, 99–144.

Csontos L. & Horváth F., 1995: Tertiary structural evolution of the

Intra-Carpathian area: A report on integrated basin studies,
Pannonian Basin E.C. Project. Geol. Soc. Greece, Spec. Publ.,
4, 12–17.

Csontos L., Tari G., Bergerat F. & Fodor L., 1991: Evolution of the

stress fields in the Carpatho-Pannonian  area during the Neo-
gene. Tectonophysics, 199, 73–91.

Csontos L., Nagymarosy A., Horváth F. & Kováč M., 1992:  Tertia-

ry evolution of the Intra-Carpathian area: A model.  Tectono-

, 208, 221–241.

Dank V. & Fülöp J., 1990: Map of the pre Tertiary basement of  the

Hungary. Geol. Surv. Budapest, Hungary.

Ebner F. & Sachsenhofer R.F., 1991: Die Entwicklungsgeschichte

des Steirischen Tertiärbeckens. Mitt. Abt. Bergb. Geol.
Paläont. Landesmus. Joanneum (Graz),

 49, 5–96.

Fodor L., 1995: From transpression to transtension: Oligocene–

Miocene structural evolution of the Vienna basin and the  East
Alpine-Western Carpathian junction. Tectonophysics,  242,

Fodor L., Marko F. & Nemčok M., 1991: Evolution  microtecto-

nique et paleó-champs de constraines du Basin de  Vienna.
Geodyn. Acta

, 4, 3, 147–158.

Fodor L., Magyari A., Kázmér M. & Fogarasi A., 1992: Gravity

flow dominated sedimentation on the Buda paleoslope:
records of the Late Eocene escape tectonics of the Bakony unit.
Geol. Rdsch.,

 81, 797–816.

Fordinál K. & Zlinská A., 1994: Sarmatian Fauna from the Streta-

va and Kochanovce formations in the Sečovce area (Al-
bínovská  Hôrka, Eastern Slovak Basin). Geol. Práce, Spr.,
99, 77–82 (in Slovak).

Fornaciari E. & Rio D., 1996: Latest Oligocene to early middle Mi-

ocene quantitative calcareous nannofossil biostratigraphy in
the Mediterranean region. Micropaleontology, 42, 1, 1–36.

Franko O., Vass D., Franců J., Král M., Pereszlényi M. & Milička J.,

1992: First occurrence of oil in the Slovak part of the Danube
lowland. Miner. slovaca, 24, 453–460 (in Slovak).

Friebe J.G., 1990: Lithostratigraphische Neugliederung und  Sedi-

mentologie der Ablagerungen des Badenium (Miozän) um die
Mittelsteirische Schwelle (Steirisches Becken, Österreich). Jb.
Geol. B-A,

 133, 223–257.

Fülöp J. (Ed.), 1983: Lithostratigraphic Formations of Hungary.


Budapest1–285 (in Hungarian).

background image

336                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY

Fülöp J., Bresznyánszky K. & Haas J., 1987: The new map of  the

Pannonian basin basement in the Hungary. Acta Geol. Hung.,
30, 1–2, 3–20.

Fusán O., Biely A., Ibrmajer J., Plančár J. & Rozložník L., 1987:

Basement of the Tertiary of the Inner West  Carpathians.

 Bratislava, 1–103.

Fuchs W., 1985: Geologische Karte der Republik Österreich  1 :

50,000, 61—Hainburg an der Donau. Geol. Bundesanst.,

Gašparík J., 1969: Paleogeography and widening of the Horná  Ni-

tra Basin Neogene. Zbor. Geol. Vied, Západ. Karpaty, Rad

, 11, 172–181 (in Slovak).

Gašparíková V., 1972: Microbiostratigraphy of the Paleogene and

Lower Miocene sediments of the Vtáčnik. Manuscript, Geo-

 Bratislava (in Slovak).

Gaža B., 1984: in: Bednaříková J. & Thon A. (Ed.): Hydrocarbon

exploration in Czechoslovakia. Knihovnička ZPN, 5, 290–298.

Gnojek I. & Heinz H., 1993: Central European (Alpine-Car-

pathian) belt of magnetic anomalies and its geological  inter-
pretation. Geol. Carpathica, 44, 3, 135–142.

Grill R., 1941: Stratigraphische Untersuchungen mit Hilfe von

Mikrofaunen in Wiener Becken und den benachtbarten Mo-
lasse - Anteilen. Öl und Kohle, 37, 595–602.

Hámor G. (Ed.), 1988: Neogene palaeographic atlas of Central and

Eastern Europe. Hung. Geol. Inst., Budapest, 7 maps.

Haq B.U., 1991: Sequence stratigraphy, sea-level change and signif-

icance for the deep sea. Spec. Publs. int. Ass. Sed., 12, 3–39.

Hók J., Šimon L., Kováč M., Elečko M., Vass D., Halmo J. & Ver-

bich F., 1995: Tectonics of the Hornonitrianska  kotlina De-
pression in the Neogene. Geol. Carpathica, 46, 4,191–196.

Holcová K., 1996: Determination of transport of foraminiferal

tests in the fossil record (the South Slovak Basin, Middle Mi-
ocene). Neu. Jb. Geol. Paleont., Mh., 4, 193–217.

Homola V., 1960a: Borehole Nová Vieska-1 in the Danube basin.


 Geofond, Bratislava (in Czech).

Homola V., 1960b: Borehole Diakovce 1 in the Danube Basin.


 Geofond, Bratislava (in Czech).

Homola V. & Slavíková K., 1955: Results of  analysis of the bore-

hole Báhoň-1 in the NW part of the Danube basin. Manu-

 Geofond, Bratislava (in Czech).

Horváth F. & Royden L., 1981: Mechanism for the formation of

the intra-Carpathian basins: A review. Earth Evol., Sci., 3/4,

Horváth F., 1993: Towards a mechanical model for the formation

of the Pannonian basin. Tectonophysics, 226, 333–357.

Horváth F., Szalay A., Dövényi P. & Rumpler J., 1986:  Structural

and thermal evolution of the Pannonian basin. In:  Burns J.
(Ed.): Thermal modelling in sedimentary basins. Tecnip., Par-
is, 339–358.

Hrušecký I., Pereszlényi M., Hók J., Šefara J. & Vass D., 1993: The

Danube Basin geological pattern in the light of  new and rein-
terpretation of old geophysical data. In: Rakús  M. & Vozár J.
(Eds): Geodynamical model and deep structure of the Western
Carpathians. GÚDŠ, Bratislava, 291–296 (in Slovak).

Hrušecký I., Šefara J., Masaryk P. & Lintnerová O., 1996: The

structural and facies development and exploration potential
of the Slovak part of the Danube Basin. In: Wessely G. & Lie-
bl W. (Eds): Oil and Gas in the Alpidic Thrust Belts and Ba-
sins of Central and Eastern Europe. EAGE Spec. Publ., 5,

Hudáčková N., 1995: Ecotype variability of genus Ammonia Brun-

nich 1772 in the Neogene of Paratethys and their paleoeco-
logical significance. Miner. slovaca, 27, 133–144.

Hudáčková N. & Kováč M., 1993: Sedimentary environment

changes in the eastern part of the Vienna Basin during Upper
Badenian and Sarmatian. Miner. slovaca,  25, 3, 202–210.

Jandová V., 1955: Foraminifers from the borehole Vráble 1. Manu-

script, Geofond,

 Bratislava (in Czech).

Jandová V., 1956: Foraminifers from the boreholes Madunice 1, 2,

4. Manuscript, Geofond, Bratislava (in Czech).

Jandová V., 1959a: Foraminifers from the borehole Modrany 1.


 Geofond, Bratislava (in Czech).

Jandová V., 1959b: Foraminifers from the borehole Modrany 2.


Geofond, Bratislava (in Czech).

Jiříček R., 1969: Stratigraphical sections of the boreholes Trakov-

ice. ManuscriptGeofond, Bratislava (in Czech).

Jiříček R., 1990: Fluvial and deltaic systems of Neogene Parat-

ethys. In: Sedimentologiccal problems of the Western Car-
pathians. Konferencie-sympózia-semináre, GÚDŠ, Bratislava,
79–88 (in Slovak).

Keith J. F., Vass D. & Kováč M., 1994: The Danube Lowland  Ba-

sin. ESRI, Occasional Publ. 11A, Slovak Geology, 63–87.

Kilényi E. & Šefara J. (Eds.), 1989: Pre-Tertiary basement  con-

tour map of the Carpathian basin beneath Austria, Czechoslo-
vakia and Hungary. Eötvös Lóránd Geophysical Institute,
Budapest, Hungary.

Kókay J., 1971: Das Miozän von Várpalota. Bull. Hung. Geol.


., 101, 217–224.

Kollmann K., 1965: Jungtertiär im Steirischen Becken. Mitt. Geol.


(Wien), 57, 479–632.

Körössy L., 1987: Hydrocarbon geology of the Little Plain of

Hungary. Gen. Geol. Rev., 22, 99–174 (in  Hungarian).

Kováč M., 1986: Lower Miocene sedimentation in the area of

Jablonica depression—a model bound to oblique slip mobile
zone. Geol. Zbor. Geol. Carpath., 37, 1, 3–15.

Kováč M. & Hudáčková N., 1997: Changes paleoenvironment as a

result of interaction of tectonic events with sea level changes
in the northeastern margin of the Vienna Basin. Zbl. Geol.

., Teil I, 5-6, 457–469.

Kováč M. & Zlínská A., 1998: Change of paleoenvironment as a

result of interaction of tectonic events and sea level oscilla-
tion in the east Slovak Basin. Przegl. Geol., 46, 5, 403–409.

Kováč M., Baráth I., Holický I., Marko F. & Túnyi I.,  1989a: Ba-

sin opening in the Lower Miocenen strike-slip zone  in the
SW part of the Western Carpathians. Geol. Zbor. Geol.  Car-

., 40,1, 37–62.

Kováč M., Cícha I., Krystek I., Slaczka A., Stráník Z.,  Oszczypko

N. & Vass D., 1989b: Palinspastic maps of the  Western Car-
pathian Neogene. Praha, 31.

Kováč M., Michalík J., Plašienka D. & Putiš M., 1991a: Malé

Karpaty Mts. —Geology of the Alpine-Carpathian Junction.
Excursion guide. Konferencie, sympóziá, semináre, GÚDŠ,
Bratislava, 1–82.

Kováč M., Baráth I., Šutovská K. & Uher P., 1991b: Changes in

the sedimentary records in the Lower Miocene of the Dobrá
Voda Depression. Miner. slovaca, 23, 201–213 (in Slovak).

Kováč M., Šutovská K., Nemčok M. & Fordinál K., 1992:  Planin-

ka Formation—Ottnangian to Lower Badenian sediments in
the northern part of the Malé Karpaty Mts. Geol. Práce, Spr.,
96,  47–50 (in Slovak).

Kováč M., Nagymarosy A., Soták J. & Šutovská K., 1993a: Late

Tertiary paleogeographic evolution of the Western Car-
pathians. Tectonophysics, 226, 401–415.

Kováč M., Marko F. & Nemčok M., 1993b: Neogene structural

evolution and basin opening in the Western Carpathians. Geo-
physical Trans.

 (Budapest), 37, 297–309.

Kováč M., Krá  J., Márton M., Plašienka D. & Uher P., 1994: Al-

pine Uplift History of the Central Western  Carpathians: Geo-
chronological, paleomagnetic, sedimentary and structural

Geol. Carpathica

, 45, 2, 83–96.

Kováč M., Baráth I. & Nagymarosy A., 1997a: The Miocene col-

lapse of the Alpine-Carpathian-Pannonian junction—an over-

background image


wiev. Acta Geol. Hung., 40, 3, 241–264.

Kováč M., Bielik M., Lexa J., Pereszlényi M., Šefara J., Túnyi I. &

Vass D., 1997b: The Western Carpathian intramountane ba-
sins. In: Grecula P. et al. (Eds.): Geological evolution of the
Western Carpathians. Miner. slovaca, Spec. Publ., 43–64.

Lankreijer A., 1996: Rheology and basement control on extension-

al basin evolution in Central and Eastern Europe: Variscan
and Alpine-Carpathian-Pannonian tectonics. Vrije Univer-

NSG Publ. no. 980101, 1–158.

Lankreijer A., Kováč M., Cloetingh S., Pitoňák P., Hlôška M. &

Biermann C., 1995: Quantitative subsidence analysis  and
forward modeling of the Vienna and Danube Basins.  Tec-

, 252, 433–451.

Lehotayová R., 1977: Calcareous nannoflora of the Miocene of the

Bánovce depression. Manuscript, Geofond, Bratislava (in

Lehotayová R., 1984: Miocene nannoplankton zones in west Car-

pathians. Západ. Karpaty, Ser. Paleont., 8, 91–110.

Lexa J., Konečný V., Kaličiak M. & Hojstričová V., 1993:  Tempo-

ral and spatial distribution of volcanics of the  Carpathian-
Pannonian region. In: Rakús M. & Vozár J. (Eds.):
Geodynamical model and deep structure of the Western Car-
pathians.  Konferencie, Sympózia, Semináre, GÚDŠ, Bratisla-
va, 57–70 (in Slovak).

Lexa J., Konečný V., Kováč M. & Nemčok M., 1995: Relationship

among convergence, back-arc extension and volcanism in the
Western Carpathians during Neogene. Europrobe Workshops

Abstracts. Stará Lesná,  Slovakia, 65–66.

Marko F. & Uher P., 1992: Postintrusive deformation from south-

ern border of Bratislava granitoide massif. Miner. slovaca,
24, 367–379 (in Slovak).

Marko F., Kováč M., Fodor L. & Šutovská K., 1990: Deformations

and kinematics of a Miocene shear zone in the  northern part
of the Little Carpathians (Buková Furrow,  Hrabník Forma-
tion). Miner. slovaca, 22, 5, 399–410.

Marko F., Fodor L. & Kováč M., 1991: Miocene strike-slip  move-

ment, faulting and block rotation in Brezovské Karpaty  Mts.
Miner. slovaca

, 23, 189–200.

Marko F., Plašienka D. & Fodor L. 1995: Meso-Cenozoic stress

fields within the Alpine-Carpathian transition zone: A review.
Geol. Carpathica, 46

, 1, 19–27.

Martini E., 1971: Standard Tertiary and Quaternary calcareous

nanoplankton zonation. Procceding of 2-nd planktonic con-

 Roma 1970, 739–785.

Milička J., Pereszlényi M. & Masaryk P., 1989: Natural gas seep-

age from a dug well in Gemerská Panica. Acta Geol. Univ.

., 52, 39–46.

Milička J., Pereszlényi M., Šefara J. & Vass D., 1994: Organic

geochemical study of the junction zone of the Danube Basin
and Inner West Carpathians, Slovakia. First Break, 12, 11,

Milička J., Pereszlényi M., Franců J. & Vitáloš R., 1996: Organic

geochemical appraisal of hydrocarbon potential in the
Danube Basin, Slovakia. In: Wessely G. & Liebl W. (Eds.):
Oil and Gas in the Alpidic Thrust Belts and Basins of Central
and Eastern Europe. EAGE SpecPubl., 5, 431–439.

Mišík M., 1986: Petrographic-microfacial analysis of pebbles  and

interpretation of sources areas of the Jablonica  conglomer-
ates (Lower Miocene of the NW margin of the Malé  Karpaty
Mts.). Geol. Zbor. Geol. Carpath., 37, 4, 405–448.

Murray J.W., 1991: Ecology and paleoecology of benthic Fora-

minifera. Longman Scientific & Technical, London, 1–397.

Nagy A., 1998: A review of the geological structure of the Eastern

part of Podunajská nížina. In: Nagy A. (Ed.): Explanatory
notes to the geological map of the Danube Basin eastern part
1 : 50,000. GSSR, Bratislava, 182–187.

Nemčok M., Marko F., Kováč M. & Fodor L., 1989: Neogene tec-

tonics and paleostress changes in the Czechoslovakian part of
the Vienna Basin. Jb. Geol. Bundesanst. (Wien), 132, 443–458.

Neubauer F. & Genser J., 1990: Architektur und Kinematik der

oestlichen Zentralalpen, eine Ubersicht. Mitt. Naturwiss. Ver.

, 120, 203–219.

Papp A., 1951: Das Pannon des Wiener Becken. Mitt. Geol. Ge-


. (Wien), 39–41.

Papp A. & Steininger F., 1979: Die Äquivalente des Tortonian und

Messinian in der Zentralen Paratethys. Verh. Geol. Bunde-
sanst. (Wien),


Papp A., Rögl F. & Seneš J., 1973: Chronostratigraphie und Neo-

stratotypen 3. Ottnangien. Vydav. Slov. Akad. Vied, Bratisla-
va, 1–841.

Papp A., Cícha I., Seneš J. & Steininger F., 1978: Chronostratigra-

phie und Neostratotypen Miozän der Zentralen Paratethys M4
Badenien. VEDA, Bratislava, 1–593.

Pereszlényi M., Milička J. & Vass D., 1993a: Results of geochemi-

cal investigations and hydrocarbon generation modelling in
the Danube Basin. In: Rakús M. & Vozár J. (Eds.): Geody-
namical model and deep structure of the Western Carpathians.

, Bratislava, 201–206 (in Slovak).

Pereszlényi M., Milička J. & Vitáloš R., 1993b: Bericht 1993 ue-

ber Aufnahmen auf OK Nr. 107 Mattersburg, im Gebiet von
Brennberger Blockschotter. Jb. Geol. Bundesanst. (Wien),
137/3,  412.

Pěničková M. & Dvořáková V., 1985: Fault structure of the

Danube Basin. In: Gaža et al. (Ed.): Final  report of the hy-
drocarbon prospection in Danube basin during  1973-1983.
Manuscript, Geophys. Inst., 

Brno (in Czech).

Ratschbacher L., Merle O., Davy Ph. & Cobbold P., 1991a:  Later-

al extrusion in the Eastern Alps. Part 1. Boundary  conditions
and experiments scaled for gravity. Tectonics, 10, 2, 245–256.

Ratschbacher L., Frisch W., Lintzer H.G. & Merle O., 1991b: Lat-

eral extrusion in the Eastern Alps, Part 2:  Structural analysis.

, 10, 2, 257–271.

Rögl F., 1986:  Late Oligocene and Miocene planktic Foraminifera

of the Central Paratethys. In: Bolli H.M., Saunders J.B. &
Perch-Nielsen K. (Eds.): Planktonic stratigraphy. Cambridge
Univ. Press,

 Cambridge, 315–328.

Rögl F. & Steininger F., 1983: Von Zerfall der Tethys zu  Mediterran

und Paratethys. Ann. Naturhist. Mus. (Wien), 85A, 135–163.

Royden L., 1993: The tectonic expression slab pull at continental

convergent boundaries. Tectonics, 12, 2, 303–325.

Salaj J. & Zlinská A., 1991: Early Miocene planktonic foramini-

fers of marly facies from Považská Teplá (West  Carpathians).
Miner.  slovaca

, 23, 2, 173–178.

Seneš J., 1959: Biotop und Entwicklungbedingungen der  unter-

burdigalischen Ablagerungen im Oberneutra-Tal in der  In-
trakarpatischen Depression. Geol. Práce, Zoš., 53, 65–88.

Seneš J. & Ondrejičková A., 1991: Proposal for the  terminology

of fossil marine benthic shelf ecosystems.  Geol. Carpathica,
42, 4, 231–240.

Steininger F.F. & Seneš J., 1971: Chronostratigraphie und Neostra-

totypen Miozän der Zentralen Paratethys, M1 Eggenburgian.
Vydav. Slov. Akad. Vied, 

Bratislava, 1–827.

Steininger F., Seneš J., Kleeman K. & Rögl F., 1985: Neogene of

the Mediterranean Tethys and Paratethys. Vol. 2. Inst. of  Pa-
leont. Univ. Vienna, 

Vienna, 1–536.

Šutovská K., 1993: Marine Ottnangian in the Ipe  Basin. Sbor. VII.

Uhel. Konf. Prirodov. Fak.,

 Praha, 201–202 (in Slovak).

Šutovská K., Maslowská H. & Bezvoda V., 1993: Analysis of fora-

miniferal assemblages from the Western Carpathian Lower
Miocene using special statistical methods. Geol. Carpathica,
44,3, 189–200.

Tari G., Horváth F. & Rumpler J., 1992: Styles of extension  in the

background image

338                                                                             KOVÁÈ, HOLCOVÁ and NAGYMAROSY

Pannonian Basin. Tectonophysics, 208, 203–219.

Tollmann A., 1955: Das Neogen am Nordwestrand der Eisen-

städter  Bucht. Wiss. Arb. Burgenland, (Eisenstadt), 10, 75.

Tollmann A., 1985: Geologie von Österreich. Band 2. Ausserzen-

tralalpiner Anteil. Franz Deuticke, Wien, 1–710 .

Uher P. & Kováč M., 1993: Heavy mineral associations in the

Neogene sequences of the Malé Karpaty Mts.—paleogeo-
graphic  evolution of the source areas. Geol. Práce, Spr., 98,

Vass D., Elečko M., Kantorová V., Lehotayová R. & Klubert J.,

1987: The first finding of marine Ottnangian in the South Slo-
vak Basin. Miner. slovaca, 19, 5, 417–422 (in Slovak).

Vass D., Kováč M., Konečný V. & Lexa J., 1988: Molasse  basins

and volcanic activity in West Carpathian Neogene—its  evo-
lution and geodynamic character. Geol. Zbor. Geol. Carpath.,
39, 5, 539–562.

Vass D., Pereszlényi M., Kováč M. & Král M., 1990:  Out-line of

Danube basin geology. Földt. Közl., 120, 193–214.

Vass D., Hók J., Kováč P. & Elečko M., 1993: The Paleogene  and

Neogene tectonic events of the Southern Slovakia  depres-
sions in the light of the stress-field analyses. Miner. slovaca,
25, 79–92.

Zágoršek K., Hudáčková N. & Kováč M., in press: Marine Ottnan-

gian in the NE part of the Vienna Basin (Slovakia), Slov.
Geol. Mag.

Zapletalová I. & Jiříček R., 1964: Foraminifers from the boreholes

Bánovce 1–5. Manuscript, Geofond, Bratislava (in Czech).

Zlinská A., 1992: Microfaunistical evaluation of drillhole VTB-1

(Bruty, Danube Basin) on the basis of foraminifers.

Archív GSSR, 

Bratislava (in Slovak).

Zlinská A., 1992b: Mikrofaunistische Bewertung der Bohrung

Devínska Nová Ves auf Grund der Foraminiferen und ihre
Revision, Geol. Práce, Spr., 94, 31–34 (in Slovak).

Zlinská A., 1993: Badenian microfauna from village Malá n/Hron-

om area (southeastern Danube Lowland), Geol. Práce, Spr.,
97, Bratislava, 73–78 (in Slovak).

Zlinská A., 1993a: New species of the genus Elphidium (Foramin-

ifera) from the Sarmatian of the Eastern Slovakian  Lowland.

Západ. Karpaty, Sér. Paleont

., 17, 85–87 (in Slovak).

Zlinská A., 1993b: Biostratigraphical evaluation of samples from

Chvojnícka pahorkatina Upland. Manuskript, Archív GSSR,
Bratislava (in Slovak).

Zlinská A., 1995: Biostratigraphic study of Miocene sediments

from Modra nad Cirochou based on foraminifers. Geol.
Práce, Spr.

, 100, 53–56 (in Slovak, English summary).

Zlinská A., 1996: Micropaleontological evaluation of the drillhole

HGŽ-3 (Želiezovce, Danube Basin) on the basis of  foramini-
fers. Manuscript, Archív GSSR, Bratislava (in Slovak).

Zlinská A., 1996a: Microfauna of the Vranov Formation—drill

hole BB-1 (Byšta, Eastern Slovak Basin). Geol. práce, Spr.,
102, 37–40 (in Slovak, English abstract).

Zlinská A., 1997: Biostratigraphical evaluation of samples  from

Danube Basin-east. Manuscript, Archív GSSR, Bratislava (in

Zlinská A., 1998a: Microbiostratigraphy of the Badenian sedi-

ments from East Slovak Basin on the basis of foraminifers.
Zem. Plyn Nafta,

 43, 1, 11–152 (in Slovak).

Zlinská A. & Šutovská K., 1990: Biostratigraphical and paleoeco-

logical evaluation of the LKŠ-1 borehole on the basis of fora-
minifera (the Lučenec basin). Miner. slovaca, 22, 335–343 (in

Zlinská A. & Fordinál K., 1992: Biostratigraphische und Pale-

oöekologische Bearbeitung der Badenian - Ablagerungen in
der Umgebung von Smolenice. Geol. Práce, Spr., 96, 69–73
(in Slovak).

Zlinská A. & Čtyroká J., 1993: Some remarks to the taxonomy  of

genera Spiroplectammina Cushman, 1927 and  Spiroplecti-
nella Kiselman, 1972 from the Badenian of the  Vienna Basin.
Západ. Karpaty, Sér. Paleont.

, 17,  89–97.

Zlinská A. & Fordinál K., 1995: Lower Sarmatian fauna from

Drillhole K-3 (Eastern Slovak Basin). Geol. Práce, Spr., 100,
71–76 (in Slovak, English summary).

Zlinská A., Halásová E. & Antolíková S., 1997: Evaluation of for-

aminiferal and calcareous nannoplankton assemblages from
drillhole VTB-1 (Bruty, SE part of the Danube Basin). Kni-
hovnička ZPN,

 42, 2, 157–167 (in Slovak).