background image









Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic


Department of Paleontology, Faculty of Sciences, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic

(Manuscript received February 12, 1997; accepted in revised form June 24, 1997)


 The site of Lipovany situated in Southern Slovakia near Lučenec has yielded new plant fossils including

1 bryophyte, 2 ferns, 2 conifers and 27 angiosperms. The vegetation corresponds to evergreen notophyllous/microphyl-
lous broad-leaved forest suggesting subtropical humid conditions. Instead of the previous stratigraphical interpretation
(Ottnangian), the age of the locality is older, i.e. the Eggenburgian according to new radiometric data. The nearest
locality, Ipolytarnóc in Hungary, belongs to the same floristic complex.

Key words

: Lower Miocene, Eggenburgian, fossil flora.

Geographical and geological situation

of the locality of Lipovany

The site is situated on the south-western margin of the

Cerová vrchovina Upland, which is a part of the South Slovak
Basin in a geological sense. The Cerová vrchovina Upland is
built of rocks of the Early Miocene age: the Eggenburgian
(Fi akovo Formation), Lower Ottnangian (Bukovinka Forma-
tion) and Upper Ottnangian (relicts of the Šalgótarján Forma-
tion) and topped by basalts of the Cerová Formation, Pliocene
–Quaternary in age (Vass & Elečko 1992).


The locality of Lipovany (southern Slovakia; Fig. 1) has been
known since the first studies by Němejc. His first accounts
(1960, 1967) were based on collections made by V. Čechovič
on a surface outcrop that yielded only a limited amount of ma-
terial. This Early Miocene flora was used as a parastratotype
of the Ottnangian (Němejc & Knobloch 1973). In 1984, a large
part of the slope was removed by a newly started sand pit and
thus it was possible to gather abundant plant remains from the
fossiliferous tuff and tuffite. The site has been regularly visited
at various occasions, e.g. by Sitár, Bůžek and Kvaček together
with the sites of Hajnačka and Pinciná (Sitár et al. 1989).
Since that time, a large quantity of plant fossils have been col-
lected by Sitár and concentrated in the Natural Sciences Facul-
ty of Comenius University, Bratislava.

Attempts have been made to obtain cuticular remains from

fresh material because some fragments looked carbonized.
Preparations have not been successful with rare exceptions,
because coalified fragments were fusinized due to fires dur-
ing volcanic activity and not macerable. Thus the present
study has been focused mostly on leaf morphological identi-
fications, which do not always guarantee the identification of
the natural limits and affinities of fossil taxa. The specimens
under study will be transferred to the National Museum,

We were also able to revisit the original specimens of the as-

semblage studied by Němejc & Knobloch (1973) and attempt-
ed to comment on their identifications. Our revision also takes
into account results from neighbouring localities near Ipoly-
tarnóc (Hungary) worked out by Hably (1985). The whole vol-
canic complex on either side of the Slovak-Hungarian bound-
ary corresponds floristically, although individual outcrops may
differ in the quantitative composition of their flora. New radi-
ometric data newly obtained from this complex (see below) in-
dicate a higher age than originally expected, i.e. not the Ott-
nangian, but the Eggenburgian. Therefore, the flora of
Lipovany can now be better employed for the correlation of
continental deposits elsewhere in Central Europe.

Fig. 1.

 Geographical position of locality Lipovany.

background image

264                                                                                       SITÁR and KVAČEK

 The studied plant assemblage from Lipovany occurs in

the Bukovinka Formation. As suggested below, its age
should be reevaluated to the Late Eggenburgian. The Buk-
ovinka Formation overlies the Fi akovo Formation, and in
the north-western part of the Lučenská kotlina Depression
also the Lučenec Formation. Its deposition took place after
a short hiatus, its lower boundary is sharp. In places the re-
mains of the Šalgótarján Formation (Ottnangian) can be
found as overlying strata. The Bukovinka Formation repre-
sents a depositions succession formed by several cycles of
gravel, sand and variegated clay. Layers of rhyodacite tuff
and tuffitic sandstone form intercalations within this sedi-
mentary complex.

The site of Lipovany is situated 13 km south of Lučenec

and about 1 km south-east of the village of Lipovany in
southern Slovakia. It is a sand pit, in which the lower portion
of the section exposes about 20 m thick layers of sand and
gravel. In the upper part, firm grey rhyodacite tuffs with rich
plant remains occur. Plant fossils are mostly preserved in the
form of leaf impressions, coalified (fusinized) fragments and
coalified or silicified tree trunks and roots. Fruits have very
rarely been found.

The history of palaeobotanical research of the site started

with short preliminary accounts by Němejc (1960, 1967),
who listed 25 and 16 leaf forms in each, prevailingly those
belonging to the Lauraceae. Němejc (1967) assigned this flo-
ra to the Upper Burdigalian and interpreted the climatic con-
ditions as warm, similar to the time interval in the Chattian–
Aquitanian (i.e. Egerian). A more detailed study of the
Lipovany flora was published later by Němejc & Knobloch
(1973) in the volume “Ottnangian” of the series of Chronos-
tratigraphy and Neostratotypes in the Paratethys. The locali-
ty Lipovany was chosen as a parastratotype locality there.
Hably (1985) suggested replacing it with the site of Ipoly-
tarnóc, but the decision of the Paratethys group had been
made. In view of the new age interpretation suggested below,
a problem arises, for what stage the site of Lipovany should

Rögl & Steininger (1984) maintained the Ottnangian to be

a period of global climatic deterioration on the basis of ma-
rine faunas. The thermophile floras such as those of Lipova-
ny and Ipolytarnóc do not correspond to this idea. Vass &
Elečko (1992) attributed the Bukovinka Formation including
the Lipovany locality in the Eggenburgian on the basis of the
radiometric ages of rhyodacite tuffs 20.1±0.3 Ma and
19.7±0.2 Ma (Repčok 1987; Kantor & Wiegerová 1988) as
well as on the basis of the thermophile flora.

Systematic descriptions




Pl. I: Fig. 1

Material: 69

Impression of bryophyte cauloids very similar to the Re-

cent genus Plagiothecium. Leaf appendages are acute, oppo-

site, bent towards the cauloid apex. The plant might have
grown on tree trunks, or on humid soil in forests or rocks.




Pl. I: Fig. 2

Material: 145

Fragmentary impressions of apical parts of fern fronds.

Pinnulae are lobed, with a midrib and secondaries that arise
under acute angles and end in the lobes. Among extant ferns,
Asplenium serpentini 

Tausch. is similar in leaf morphology,

although sterile remains of this sort are hardly determinable.


Woodwardia muensteriana 

(Presl in Sternberg) Kräusel

Pl. I: Fig. 3

1838  Pecopteris münsteriana Presl in Sternberg, p.154, Pl.  36, fig. 2.
1921  Woodwardia münsteriana (Presl & Sternb.) Kräusel p. 336,
          Pl.11, figs. 2,6–8, Pl. 12, fig. 4.
1985  Woodwardia muensterniana (Presl in Sternberg) Kräusel —
          Hably, p. 136, Pl. 2, figs. 2–5.

Material 87

Very small leaf fragment, with 2 pairs of opposite pinnules,

which are fused together at the base to one third of the length.
Pinnules 1 cm long and 0.4–0.5 cm wide. Midrib very delicate,
secondaries hardly visible. Leaf margin slightly wavy.


Pinus saturni 


Pl. I: Fig. 4; Pl. V: Fig. 13

1847 Pinus saturni Ung. — Unger, p.16, pl. 4, figs. 1–3, pl. 5.
1985 Pinus saturni Unger — Hably, p. 84, pl. 5, figs. 1–2.

Material: 67, 140

Impressions of fragmentary leafy shoots with needle leaves

in dense groups. Leaves incomplete in length of max. 7 cm are
very narrow (0.5–0.7 mm across). They were probably joined
in fascicles of three, which left elliptical traces on the twig.

According to Unger (1847) the leaves attained up to 17–

18 cm in length. He compares this fossil species with the ex-
tant Pinus patula Schied. & Deppe from Mexico while Menzel
(1901) with the North American P. serotina Mchx., P. sabinia-

Dougl. and the Canary Islands P. canariensis Sm. More ex-

Plate I: Fig. 1.

 Plagiothecium sp. 3



no. 69. Fig. 2. Asplenium sp.



, no. 145. Fig. 3. Woodwardia muensteriana (Presl in Sternb.)

Kräusel 3


, no. 87. Fig. 4. Pinus saturni Ung., no. 140. Fig. 5. Tetr-

aclinis salicornioides 

(Ung.) Kvaček, no. 55. Fig. 6. Magnolia di-


Ung., no. 13. Fig. 7. Magnolia dianae Ung., no. 12. Fig. 8.


cf. mirabilis Kolak., no. 163. Fig. 9. Magnolia cf. mirabi-


Kolak., no. 161. Fig. 10. Magnolia sp., no. 109.

background image

PLATE I                                                                                                265

background image

266                                                                                       SITÁR and KVAČEK

act relationships of detached foliage of pines are difficult to as-


Tetraclinis salicornioides 

(Unger) Kvaček

Pl. I: Fig. 5; Pl. V: Fig. 12

1838 Hellia salicornioides Unger, p.101, nom. invalid.
1847 Thuytes salicornioides Ung. — Unger, p. 11, pl. 2, figs.  1–4, 7.
1847 Libocedrites salicornioides (Ung.) Endl. — Endlicher, p.  175.
1985 Libocedrites salicornioides (Unger) Endlicher — Hably,  p. 84,
          pl. 4, figs. 2–4.
1989 Tetraclinis salicornioides (Unger) comb. nova — Kvaček,  p. 48,
          pl. 1, fig. 11, pl. 2, figs. 2–14, pl. 3, figs  3–4, text-fig. 1.

Material: 55, 57, 137

Impressions of leafy shoots with opposite branching, con-

sisting of 1–1.3 cm long cladode-like segments, verticilles of
four fully merged dimorphic scale leaves. The segments look
like a single leaf with a medial vein.

These remains are accessory fossils in the site of Lipovany.

In Slovakia they occur also in the Eggenburgian of Ve ká
Čausa and the Upper Badenian–Lower Sarmatian deposits at
Lehota pod Vtáčnikom. According to Hably (1985) the same
species in known in the Upper Oligocene to Sarmatian in
Hungary. The remains are also scanty there. T. salicornioides
is regularly associated with the late mastixioid floras of Cen-
tral Europe. Ecologically, it is a subtropical mesophytic ele-
ment of humide climate.


Magnolia dianae 


Pl. I: Figs. 6, 7

1850 Magnolia dianae Ung. — Unger, p. 442.
1861 Magnolia dianae Ung. — Unger, p. 26, pl. 11, figs. 1–4.
1985 Magnolia dianae Ung. — Hably, p. 85, pl. 5, figs. 3–5,  pl. 6,
         figs. 2–3.

Material: 12, 13, 104

Fragmentary impressions of large elliptical leaves, narro-

wed to the apex and base. Judging according to incomplete
remains, the maximum length was 10 cm and more. They are
4.5 cm wide. Midrib distinct, secondaries fine, campto-
drome, typical of this species. Intersecondaries usually
present, they are finer and reach only to one third of the leaf

 This form species occurs mainly in the Upper Oligocene

and Lower Miocene. A Sarmatian record was published by
Andreánszky (1959) from the locality Szalecsi Valley in


 cf. mirabilis  Kolakovskij

Pl. I: Figs. 8, 9

1959 Magnolia mirabilis Kolakovskij — p. 38, Pl. 14, fig. 2.
1964 Magnolia mirabilis Kol. — Kolakovskij, p. 117, Pl. 45,  fig. 1–4.
1985 Magnolia mirabilis Kolakovskij — Hably, p. 139, Pl. 7, figs. 1–3.

Material: 161, 163

Incomplete impressions of entire-margined leaves, 3 and 4

cm wide and preserved length of 8 and 5 cm. Venation corre-
sponds to the description by Kolakovskij (1964) and Hably
(1985). Impressions suggest coriaceous texture of leaves.



Pl. I: Fig.10

Material: 109

Leaf fragmentary, narrow oval, entire-margined, 4 cm

wide, preserved length 8.5 cm. Midrib slightly bent, second-
aries straight for the most part, densely and regularly spaced,
interspaced with parallel intersecondaries, looping very near
the margin. Higher-order venation hardly visible. One lower
secondary vein forked.

The fragmentary nature of the specimen prevents us giving

a more precise identification. It differs from the above Mag-
nolia dianae 

by its slender shape and more regular secondary

venation. A similar leaf illustrated in Němejc & Knobloch
(1973, pl. 3, fig. 6) was compared with the genus Nyssa
Gronov ex L. by these authors.


Litsea ipolytarnocensis 


PlII: Fig. 1

1985 Litsea ipolytarnocense sp. n. — Hably, p. 143, pl. 12, figs. 1, 4, pl.
         13, fig. 1–4.

Material: 128

Impression of an oval leaf, entire-margined, 9 cm long and

5 cm wide, widely cuneate at the base, apex acuminate. Ve-
nation brochidodrome, secondaries widely spaced, bent, the
lower pair opposite, more distinct. Tertiaries perpendicular to
the midrib within the lamina, on the outer side of the basal
veins forming small loops towards the leaf margin.

Hably (1985) described exactly the same type of foliage

from the site Ipolytarnóc as a new species of Litsea. The only
impression at hand does not allow us to verify the generic

“Persea” speciosa 


Pl. II: Figs. 2, 3

1856 Persea speciosa m. — Heer, p. 81, pl. 90, figs. 11–12,  pl. 100, fig. 18.

Material: 35, 59, 151, 169, 192

Impressions of large lanceolate, entire-margined leaves,

which are equally narrowed towards the apex and the base.

Plate II: Fig. 1.

 Litsea ipolytarnocensis Hably, no. 128. Fig. 2.

“Persea” speciosa 

Heer, no. 35, Cassia berenices Ung., no. 33,

34. Fig. 3. “Persea” speciosa Heer, no. 151. Fig. 4. “Laurus”

Ung. sensu Weyl., no. 60. Fig. 5. “Laurus” princeps

Heer, no. 61. Fig. 6.  “Laurus” princeps Heer, no. 165. Fig. 7.
Laurus” princeps Heer, no. 83. Fig. 8. Laurophyllum pseudoprin-

Weyl. & Kilpper, no. 10. Fig. 9. Laurophyllum pseudoprin-


Weyl. & Kilpper, no. 108. Fig. 10. Laurophyllum cf. acuti-


Mai, no. 75. Fig. 11. Daphnogene polymorpha (Al. Br.)

Ett., no. 149.

background image

PLATE II                                                                                                267

background image

268                                                                                       SITÁR and KVAČEK

The maximum width of 3–6 cm lies in the middle of the leaf
length. Although fragmentary, the leaves were quite large be-
cause fragments attain up to 7 cm in width and 20 cm of
about 2/3 of a leaf. Venation brochidodrome, midrib strait or
slightly bent, secondaries bent , arising under angles of 30–

from the midrib and looping along the margin. Tertiaries

form a regular polygonal network.

A very similar form was published by Hably (1985) from

Ipolytarnóc under the same designation. Among the extant
Lauraceae,  Persea indica Sprengl is compared most fre-
quently with such lauraceous leaf impressions.

“Laurus” primigenia 

Unger 1850 sensu Weyland 1934

Pl. II: Fig. 4

1850 Laurus primigenia Ung. — Unger, p. 168, pl. 40, figs.  1–4.
1934 Laurus primigenia Ung. — Weyland, p. 71, pl. 12, figs.  1, 3, pl.
        13, figs. 2, 5.
1973 Laurus sp. (“Laurus” cf. primigenia Unger, 1850 sensu Weyland
       1934) — Němejc & Knobloch, p. 712, pl. 5, figs. 1, 4, 6, pl. 7,
        fig. 4, pl. 10, figs. 2–3.
1985 “Laurus” primigenia Unger, 1850 sensu Weyland 1934 —
        Hably, pl. 15, figs. 2, 5.

Material: 60, 71, 78, 102, 119, 166, 166a

Impressions of oblong, narrow leaves, 2.6–3.5 cm. wide

and 8–13 cm long, narrowed to the base and the apex. They
differ from the forms of “Persea” speciosa by more widely
spaced secondaries ( in number of 5 to 7 pairs), arising at
stepper angles (40


) at distances of 1.4–1.6 cm. Venation


Lauroid foliage is well represented in the Oligocene and Mi-

ocene floras in Europe. Their forms are quite diverse. Thus
Hably (1985) recognized 5 different taxa at Ipolytarnóc,
Němejc & Knobloch (1973) even 6 of non-triveined leaves at
Lipovany. Heer (1856) described as many as 7 species of Lau-

beside similar forms of Persea braunii etc. Without cuti-

cular structures the identification of various lauraceous leaves
is problematic. Morphological characteristics is too uniform to
be very useful in discriminating natural taxa. Therefore only
most discrete form species of pinnately veined foliage of the
Lauraceae are recognized herein for variable leaf impressions
occurring at Lipovany. The above employed entity was revised
by Ferguson (1971) on the material from Kreuzau. It shows
cuticular structure different from the common Laurophyllum

Weyland &  Kilpper.

“Laurus” princeps 


Pl. II: Figs. 5–7; Pl. VII: Figs. 4, 6

1856 Laurus princeps m. — Heer, p. 77–79, pl. 89, figs.  16–17, pl. 90,
        figs. 17, 20.

Material: 61, 70, 72, 73, 74, 75, 79, 79a, 83, 83a, 83c, 84, 85,
105, 110, 150, 153, 160, 165, 173, 184, 193, 194, 197

Impressions of elliptic leaves, longly narrowed to the base,

and apiculate at the apex (“drip-tip”), 7–9 cm long and 1.8–
2.5 cm wide. Venation more regular than in the next Lauro-
phyllum pseudoprinceps

. Midrib straight, distinct, secondar-

ies dense, arising at angles of 50


 at the leaf base to 40



the apex, looping along the margin.

Laurophyllum pseudoprinceps  

Weyland & Kilpper

Pl. II: Figs. 8, 9

1963 Laurophyllum pseudoprinceps Weyland & Kilpper — p. 100, pl. 6,
        pl. 23, figs. 14–19.
1985 Laurophyllum pseudoprinceps Weyland & Kilpper — Hably, p. 99,
        pl. 17, figs. 2–3.

Material: 6, 8, 8b, 10, 11, 21a, 53, 66,92, 93, 108, 133, 135,
135a, 144, 181, 198

Elongate, entire-margined leaves with longly cuneate base,

acute apex, about 3 cm wide and 10 cm long. Midrib straight,
secondaries bent, arising at angles of 45 to 60


, at distances of

0.8–1.2 cm. In contrast to “Laurus” princeps, the secondaries
are forked near the margin and arch-like interconnected. Ter-
tiary venation polygonal. In rare cases fragments of leaves
bear cuticle remains showing the structure of this well-defined
species: adaxial anticlines with bead-like thickenings, stomata
on the abaxial side amphibrachyparacytic, with broad lamella-
like ledges. Hair bases have not been found.


cf. acutimontanum Mai

Pl. II: Fig. 10

? 1963 Laurophyllum acutimontanum sp. n. — Mai, pro parte p. 72,
              pl. 8, figs. 7–19, 12, pl. 9, figs. 1–4, text-fig.  11 f–h.

Material: 16, 75, 168

Leaves elongate/lanceolate, 6–9 cm long, 1.2–1.5 cm

wide, entire-margined. Venation brochidodrome, midrib
straight, secodaries widely spaced, bent, under angles of 60–


, looping along the margin, intersecondaries frequent.

Tertiary veins form polygonal meshes irregular in form and
orientation. Higher-order venation distinctly reticulate. Tex-
ture thickly coriaceous.

Similar narrow lauroid and coriaceous leaves from the

Late Eocene and Oligocene of Europe can be safely recog-
nized as this entity on account of their characteristic cuticu-
lar structure (Mai 1963; Kvaček 1971). Our material lacks
cuticles and thus a mere comparison based on gross-mor-
phology can be made. Similar forms were assigned to Lauro-

 cf. reusii by Němejc & Knobloch (1973).

Plate III: Fig. 1.

 Daphogene polymorpha (Al. Br.) Ett., no. 107.

Fig. 2.

 Daphogene polymorpha (Al. Br.) Ett., no. 97. Fig. 3. Daph-

nogene polymorpha 

forma bilinica Ung. comb.nova, no. 94.

Fig. 4.

 Daphnogene polymorpha forma bilinica Ung. comb.nova,

no. 138.  Fig. 5. Daphnogene polymorpha forma bilinica Ung.
comb.nova, no. 139. Fig. 6. Daphnogene polymorpha forma bilin-

Ung. comb.nova, no. 98. Fig. 7. Daphnogene polymorpha for-

ma bilinica  Ung. comb.nova, no. 176. Fig. 8. Daphnogene poly-

forma bilinica Ung. comb.nova, no.127. Fig. 9. Platanus


(Ett.) Bůžek, Holý, Kvaček no. 9. Fig. 10. Platanus nep-


(Ett.) Bůžek, Holý, Kvaček no. 103. Fig. 11. Platanus neptuni

(Ett.) Bůžek, Holý, Kvaček no. 47a.  Fig. 12. Platanus neptuni
(Ett.) Bůžek, Holý, Kvaček no. 156. Fig. 13. Platanus neptuni
(Ett.) Bůžek, Holý, Kvaček no. 3. Fig. 14. Platanus neptuni (Ett.)
Bůžek, Holý, Kvaček no. 4.

background image

PLATE III                                                                                               269

background image

270                                                                                      SITÁR and KVAČEK



Various views were expressed about the systematic posi-

tion of the form genus Daphnogene versus Cinnamomum
(Heer 1856; Depape 1922; Kräusel & Weyland 1950; Hantke
1954; Weyland & Kilpper 1963; Knobloch 1961, 1962, 1968;
Kvaček 1971; Kvaček & Walther 1974 and others). The re-
cent discovery of Cinnamomum camphora-allied fruits ac-
companying Daphnogene leaves at the site Kreuzau (Pingen
et al. 1994) corroborate the view of Kräusel and Weyland
(1950) that Cinnamomum camphora is the best analogue of
the foliage in question. At Ipolytarnóc Hably (1985) recog-
nized 5 different entities, Němejc & Knobloch (1973) at Li-
povany three. At present we accept a more logical solution
that the broader and narrower forms belong to one natural
species. Therefore we do not recognize the forms as natural
taxonomic units in this case.

Daphnogene polymorpha 

(Al. Braun) Ettingshausen

Pl. II: Fig. 11; Pl. III: Figs. 1, 2

1845 Ceanothus polymorphus A. Braun, p. 171.
1851 Daphnogene polymorpha (A. Braun) Ettingshausen, p. 16,  pl. 2,
          figs. 22–25.
1973  Daphnogene spectabile (Heer 1856) Knobloch, 1968 — Němejc &
          Knobloch, p. 706, pl. 4, fig. 1, pl. 9, fig. 4.
1985 Daphnogene cinnamomifolia (Brongn. in Cuvier) — Hably,  p. 90.
1985 Daphnogene cinnamomeifolia (Brongniart) Bronn — Hably,  p. 90,
         pl. 9, figs. 2–3, text-fig. 6.
1985 Daphnogene polymorpha (A. Braun) Ettingshausen — Hably, p. 92,
         pl. 11, figs. 1–4, text-fig. 8.
1985  Daphnogene spectabile (Heer) Knobloch — Hably, p. 94,  pl. 11,
         fig. 5, pl. 12, figs. 2–3, text-fig. 9.

Material: 97, 107, 134, 149

Miocene populations usually slightly differ from those of

the Palaeogene by more variable foliage and also include
short and broad forms. This is the case of the suite of
triveined leaves from Ipolytarnóc (Hably 1985). At Lipovany
broader forms are rare. They differ from the “bilinica” form
described below by a more oval form and larger size. The
width of the leaves attains more than 3 cm, the length cannot
be estimated in fragments at hand. The veinlets arise from
the midrib and the basal veins nearly at right angles.

Daphnogene polymorpha 

(A. Braun) Ettingshausen

forma bilinica (Unger) stat. n.

Pl. III: Figs. 3–8

1847 Ceanothus bilinicus Unger, p. 145, pl. 49, fig. 9.
1950 Cinnamomophyllum scheuchzeri (Heer) Kräusel & Weyland,  p.
         68, pl. 11, fig. 7, pl. 16, figs. 1–6, pl. 17, fig.  1, pl. 18, figs. 2–4.
1967 Daphnogene bilinica (Unger) comb. nov. — Kvaček &  Knobloch,
         p. 203.
1973 Daphnogene bilinica (Unger) Kvaček & Knobloch — Němejc
        & Knobloch, p. 703, pl. 2, fig. 1, 7, pl. 3, fig. 1,  pl. 8, figs. 2, 8,
         9, pl. 10, figs. 1, 6.
1973  Daphnogene cinnamomeifolia (Brongniart, 1822) Bronn,  1853–
        1856 — Němejc & Knobloch, p. 705, pl. 2, fig. 3.
1985 Daphnogene bilinica (Unger) Kvaček & Knobloch — Hably,  p. 91,
         pl. 9, figs. 1, 4–6, pl. 10, figs. 1–7, text-fig. 7.

Material: 56, 94, 95, 96, 98, 120, 127a, 138, 139, 147, 152,
154, 155, 157, 158, 170, 176

Impressions of elongate-lanceolate leaves, longitudinally

narrowed towards the base and the apex. The size varies in the
range of 4–8(–10) cm in length and 1.5–3 cm in width. The
midrib is mostly straight, basal veins slightly thinner, arising at
various distances from the base. They are subparallel with the
margin to about two thirds of the leaf length, where they loop
with the secondaries or merge with the higher-order venation.

Similar cinnamomoid forms occur in Europe starting with

the Late Eocene. Daphnogene polymorpha forma bilinica oc-
curs in Slovakia more abundantly till the Badenian, rarely
also in the Sarmatian.


Platanus neptuni 

(Ettingshausen) Bůžek, Holý & Kvaček

Pl. III: Figs. 9–14; Pl. VII: Fig. 5

1866  Sparganium neptuni Ettingsh. — Ettingshausen, p. 31, pl.  7,
         figs. 9–15, 17–18.
1967  Platanus neptuni (Ettingshausen 1866) comb. nov. — Bůžek,
         Holý & Kvaček, p. 205, pl. 1, figs. 1–6, pl.  3, figs. 1–4.
1985  Platanus neptuni (Ettingshausen) Bůžek, Holý & Kvaček —
         Hably, p. 101, pl. 17, fig. 6, pl. 18, figs. 1–6, pl.  19, figs. 1–5,
         pl. 10, figs. 1–4, text-fig. 16.

Material: 2, 3, 4, 7, 9, 47a, 49, 54, 64, 68, 83b, 85a, 99, 103,
121, 136, 156, 159, 164

Before 1967, when Bůžek et al. revised this taxon, these

elongate, in the apical part bluntly toothed leaves were as-
signed mostly to Bombax, Ceratopetalum, Cunonia etc. Not
all forms included into the synonymics by Bůžek et al. (1967)
belong to this taxon. Leaves with less regular, nearly craspedo-
drome venation — Quercus artocarpites-type — were trans-
ferred to the form-genus Icaciniphyllum (Icacinaceae) by
Kvaček & Bůžek (1995). Our material includes mostly typical
leaf impressions about 10 cm long and 2 cm wide. The midrib
is straight and starts from up to 1 cm long petiole. The leaves
are slightly asymmetric at the base, acuminate at the apex. Ve-
nation semicraspedodrome, secondaries subopposite, looping
at a distance from the margin. Intersecondaries regularly
present. Awl-shaped blunt teeth on the margin except the en-
tire-margined lower third of the leaf length.

Platanus neptuni 

was distributed in Europe starting with

the Late Eocene (the type locality Kučlín), dominates in Oli-
gocene floras of Hungary (Hably 1980; Kvaček & Hably
1991), less commonly in North Bohemia (Bůžek et al. 1967)
and survives till the Miocene (Kovar-Eder et al. in press). In
Lipovany, as in Ipolytarnóc (Hably 1985), P. neptuni is one
of the dominat elements. The extant P. kerrii Gagnep. from
SE Asia is similar in its foliage.


Cyclocarya cyclocarpa 

(Schlechtendal) Knobloch

Pl. IV: Figs. 1–3; Pl. VII: Figs. 2, 3

1896–1898  Pterocarya cyclocarpa Schlechtendal, p. 20–22  (102–
         104), pl. 4, figs. 1–3, pl. 6, figs. 2–3.
1953 Cyclocarya cycloptera Iljinskaja, p. 120, nom. illegit.
1956 Cyclocarya cycloptera (Schlecht.) Iljinskaja — Kryshtofowich,
        p. 80-81, pl. 9, figs. 3–4, pl. 15, fig. 3, pl.  17, fig. 8, 10, 12, pl.
       18, figs. 10–14, text-fig.  25–28.

background image


1961  Cyclocarya cyclocarpa (Schlecht.) nov. comb. — Knobloch,  p.
          262–264, pl. 15, figs. 5–7.
1973  Cyclocarya cyclocarpa (Schlechtendal, 1896-8) Knobloch 1961
         — Němejc & Knobloch, p. 697, pl. 1, figs. 3, 5.
1985  Cyclocarya cyclocarpa (Schlechtendal) Knobloch, p. 107,  pl. 24,
         fig. 1, pl. 27, figs. 1–5, pl. 28, figs. 1–5,  text-fig. 19.

Material: 5, 14, 15, 58, 64a, 124, 126, 171, 172, 182

The foliage at hand matches well with that of C. cyclo-


described by Iljinskaja in Kryshtofowich (1956) and

by Knobloch (1961) from the Oligocene of Kazakhstan and
North Bohemia respectively. Some of the specimens differ in
the secondaries arising under angles of 45–70

from the mid-

rib and their marginal endings. The venation in some leaflets
is craspedodrome, in the others the secondaries fork and
loop, sending side veinlets into teeth. Such variation has
been found in Cyclocarya by Iljinskaja (1953). The size of
leaflet impressions is difficult to assess due to their fragmen-
tary nature. Most frequently, the leaflets are 2.5–3 cm wide
and possibly as long as 6–7 cm. The specimen No. 126 is the
most complete, 1.6


 4 cm in size.

The genus was established by Iljinskaja (1953), who sepa-

rated the extant Pterocarya paliurus Batal. (subtropical SE
China at 500–2,150 m alt.) from the rest of the genus Ptero-

Kunth. on account of peculiar fruits with circular wing.

Later Manchester (1987) found further characters that distin-
guish Cyclocarya from Pterocarya in floral morphology.


has a long history starting with the Paleocene

(Manchester 1987), C. cyclocarpa is spread in Europe in the
Oligocene to Miocene (Mai & Walther 1991). Iljinskaya mis-
takenly renamed this species Cyclocarya cycloptera Iljin-
skaya, nom. superfl. This erroneous binomen is sometimes
maintained by later authors (Manchester 1987).

Engelhardia orsbergensis 

(Wessel & Weber) Jähnichen,

Mai & Walther

Pl. IV: Figs. 4–8, 10

?1852 Xanthoxylon braunii Weber, p. 224, pl. 25, fig. 6.
?1853 Rhus prisca Ettinsghausen, p. 79, pl. 26, figs. 13–16,  20.
1956  Banksia orsbergensis Wessel & Weber, p. 146, pl. 25,  fig.9a.
1865  Engelhardia detecta Sap. — Saporta, p. 345, pl. 12, fig.  4.
1973  Engelhardia detecta Saporta — Němejc & Knobloch, p.  700, pl.
        1, fig. 7, pl. 8, figs. 1, 3–4, pl. 10, fig. 7.
1977  Engelhardia orsbergensis (Wess. & Web.) Jähnichen, Mai &
           Walther, comb. n., p. 326.
1985  Engelhardia orsbergensis (Wessel & Weber) Jähnichen,  Mai &
        Walther — Hably, p. 106, 148, pl. 20, fig. 5, pl.  24, figs. 3–6, pl.
            25, figs. 1–8, pl. 26, figs. 1–6, pl.  27, fig. 5.

Material: 1, 18, 19, 20, 22, 29, 32, 41, 42, 47, 62, 65, 80, 81,
88, 89, 90, 91, 113, 114, 115, 116, 116a, 117, 118, 122, 123,
132, 132a, 132b, 137, 140, 146, 167, 175, 177, 183

Impressions of this type occur very abundantly in Lipo-

vany: narrow small leaflets 2.4–6 cm long and 0.4–1.4 cm
wide, with sparcely finely toothed margin and asymmetric
base. Venation dense and fine, brochidodrome-semicraspe-
dodrome, with intersecondaries. Secondaries either enter the
teeth supramedially or loop along the margin. More or less
complete pinnately compound leaves are rare (see Němejc &
Knobloch 1973).

Quantitatively the isolated leaflets are as common in Lipov-

any as in Ipolytarnóc (Hably 1985). We can assume that this

element together with the Lauraceae and Platanus neptuni
dominated the vegetation in the studied area. According to
Jähnichen et al. (1977) the small size of the leaflets together
with the associated Leguminosae gives meso-xerophytic as-
pects to the environments. The present distribution of Engel-

Lsch. sensu amplo in subtropical humid forests of East

Asia and related Oreomunnea in Central America contradict
this assumption. The fossil E. orsbergensis known in Europe
from the Middle Eocene to Pliocene was surely more tolerant
to various kinds of climate than its modern analogues.

Engelhardia macroptera 

(Brongniart) Unger

Pl. IV: Fig. 9

1828 Carpinus macroptera Brongniart, p. 48, pl. 3, fig. 6.
1866  Engelhardia macroptera Brongn. sp. — Unger, p. 52, pl.  16,
         figs. 9–11.
1973  Engelhardia macroptera (Brongniart, 1828) Ettingshausen, 1851
         — Němejc & Knobloch, p. 698, pl. 4, figs. 2–3, 4b.

Material: 43

Unusually small remain of a tripartite involucrum, lobes

about 1 cm long and 0.3 cm wide. Venation not visible on the
base. A hollow space after the fruit.

Better preserved fruits of the same species have been

found by Němejc & Knobloch (1973) at Lipovany.


Caesalpinia norica 


Pl. IV: Fig. 11

1850 Caesalpinia norica Ung. — Unger, p. 187, pl. 63, figs.  9–18.

Material: 37, 186, 186a

Leaflets widely oval, slightly asymmetrical, entire-mar-

gined, truncate at the base, blunt at the apex, 1.5 cm long and
1 cm wide. Midrib thin, straight, secondaries in four subop-
posite pairs, bent. Higher-order venation very delicate.

This foliage of the Leguminosae matches well the type

material from Sotzka (Unger 1850), but the generic identifi-
cation cannot be guaranteed.

Cassia berenices 


Pl. IV: Figs. 12–18

1850 Cassia berenices Ung. — Unger, p. 188, pl. 44, figs.  4–10.
1859 Cassia berenices Ung. — Heer, p. 118, pl. 137, figs.  42–56.

Material: 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 39, 40, 44,
45, 46, 48, 62a, 77, 82, 86, 101, 125, 129a, 174, 178, 179,
180, 187, 188

Impressions of leaflets of compound leaves, which are en-

tire-margined, apiculate, narrowed towards the apex, cuneate
at the base, the widest in the lower third of the leaf length,
petiolulate (the stalk 3–5 mm long). Midrib straight, second-
aries brochidodrome, very fine. Tertiaries form irregular po-
lygonal network.

The morphological characteristics correspond best to the

description of Cassia berenices or C. phaseolites by Unger
(1850). The form of the lamina is also similar to Eugenia

Unger (1850) or Dicotylophyllum apollinis (Unger)

background image

272                                                                                               PLATE IV

background image


Knobloch (1969). However, the extant Eugenia ulmiflora,
which we have studied, differs in widely spaced eucampto-
drome secondaries. In Cassia, the secondaries are dense and
brochidodrome. Due to convergent morphology of foliage in
Leguminosae, the generic assignment must be considered
tentative. This leaf form is one of the common elements at
Lipovany. Similar remain was assigned to aff. Andromeda
sp. by Němejc & Knobloch (1973).

The species of Cassia thrive today in the tropics. The foli-

age of the extant C. laevigata Willdenow or C. corymbosa
Lambert matches best our fossil material.

cf. Cassia sp.

Pl. V: Fig. 1

Material: 196

Leaflet widely oval, 5 cm long and 2 cm wide, entire-mar-

gined, shortly petiolulate, on the base rounded, on the apex
blunt. Midrib slightly bent, secondaries irregularly spaced,
the lowermost opposite, arising from the very base, higher
secondaries alternate, camptodrome, looping very near the
margin. Intersecondaries rare. Tertiaries widely spaced, ob-
lique to the secondaries, partly percurrent. Higher-order ve-
nation very delicate, forming elongate areoles.

The single leaflet recalls the foliage described by Heer

(1859) as Cassia berenices, C. hyperborea, C. fischeri and C.



Pl. V: Figs. 2, 3

Material: 17, 17a, 38

Leaflets narrow-oval, entire-margined, shortly petiolulate,

2.5–3 cm long, 1.2–1.5 cm wide. Midrib straight, secondar-
ies thin and dense,arising at the angle of about 60


, looping

along the margin. Tertiaries forming a very regular polygonal

This type of leaflets corresponds to the general type of fo-

liage in the Leguminosae. Its more precise identification is
not possible.


cf. Icaciniphyllum sp.

Pl. V: Fig. 4

Material: 76, 76a

Leaf impression with its counterimpression, oblanceolate,

widest in the upper part, 2.3 cm wide and without its base 5.5
cm long. Margin widely finely toothed, teeth abmedially ori-
ented. Midrib straight, secondaries first straight, near the
margin zig-zag bent, along the margin connected with arch-
es, craspedodrome or semicraspedodrome. Intersedondaries
frequent, tertiaries forming polygonal meshes, higher-order
venation irregularly reticulate.

Similar leaf forms with widely spaced teeth on the margin

have been assigned to the Icacinaceae from the Paleogene of
Central Europe (Kvaček & Bůžek 1995).

? Theaceae



Pl. V: Fig. 5

Material: 106

Leaf ovate, 3 cm long, 2.2 cm wide, crenulate on the mar-

gin, base rounded, apex blunt. Secondaries in the lower part
of the leaves slightly S-like, arising at an angle of 45


, in the

upper part bent, steeper, near the margin many times
branched, the ultimate side veinlets ending in inconspicuous
(?) glandular teeth. Tertiary venation forms large polygonal
meshes, irregularly oriented to the secondaries. Higher-order
venation as irregular areolation. Thick remains of carbonized
matter suggest coriaceous texture.

A similar type of foliage has been described in the lite-

rature under various names, but they share common features
with the foliage of the Theaceae (crenulate glandular margin,
complex semicraspedodrome venation, coriaceous texture).
Without cuticular study a more precise identification is not
possible. Similar leaf forms have been illustrated and de-
scribed by Hably (1985) as  Spirea spp. (e.g. pl. 30, figs. 4, 7)
from Ipolytarnóc.

? Ebenaceae

cf. Diospyros brachysepala A. Braun

Pl. V: Fig. 6

? 1845 Diospyros brachysepala A. Braun, p. 170.
? 1859 Diospyros brachysepala A. Braun — Heer, p. 11, pl.  102, figs. 1–14.
1967    Diospyros brachysepala A. Braun — Němejc, p. 7.
1973  Diospyros brachysepala A. Braun — Němejc & Knobloch,
           p. 714, pl. 9, fig. 7.
1 9 8 5   Diospyros brachysepala A. Braun — Hably, p. 110, 150,  pl. 29,
           figs, 1–2, 6.

Material: 143, 185

Leaves oval, entire-margined, fragmentary, apex acumina-

te, 3–3.5 cm wide, preserved length maximum 7 cm. Vena-
tion camptodrome, midrib straight, secondaries in the lower
leaf part arising at 70


, higher at angle of about 45


, bent,

Plate IV: Fig. 1.

 Cyclocarya cyclocarpa (Schlechtendal) Knobloch,

no. 5. Fig. 2. Cyclocarya cyclocarpa (Schlechtendal) Knobloch, no.
58.  Fig.  3. Cyclocarya cyclocarpa (Schlechtendal) Knobloch, no.
124,  Cassia berenices Ung., no. 125. Fig. 4. Engelhardia orsber-

(Wessel & Weber) Jähnichen, no. 80. Fig. 5. Engelhardia


(Wessel & Weber) Jähnichen, no. 18. Fig. 6. Engelhar-

dia orsbergensis 

(Wessel & Weber) Jähnichen, no. 19. Fig. 7. En-

gelhardia orsbergensis 

(Wessel & Weber) Jähnichen, no.  81. Fig. 8.

Engelhardia orsbergensis 

(Wessel & Weber) Jähnichen, no. 89.

Fig. 9.  Engelhardia macroptera 

(Brongno.) Ung. 3


, no. 43.

Fig. 10.

 Engelhardia orsbergensis (Wessel & Weber) Jähnichen, no.

29.  Fig. 11. Caesalpinia norica Ung. no. 37. Fig. 12. Cassia be-

Ung., no. 48. Fig. 13. Cassia berenices Ung., no. 27.

Fig. 14.

 Cassia berenices Ung., no. 77. Fig. 15. Cassia berenices

Ung., no. 23. Fig. 16. Cassia berenices Ung., no. 82. Fig. 17. Cassia

Ung., no. 45. Fig. 18. Cassia berenices Ung., no. 26.

background image

274                                                                                       SITÁR and KVAČEK

widely spaced, looping along the margin, intersecondaries
rare, higher-order venation hardly visible.

Similar leaves also occur at Ipolytarnóc. Hably (1985) com-

pared associated calyx remains with Diospyros rugosa Saporta.

Dicotyledonidae fam. inc.

Pungiphyllum cruciatum 

(Al. Braun) Frankenhäuser &


Pl. V: Figs. 7–9

1850  Quercus cruciata Al. Braun in Stitzenberger, p. 76.
1981 “Quercus” cruciata Al. Braun 1851 — Kvaček & Walther,  p. 85,
         pl. 7, figs. 1–4, pl. 8, figs. 1-6, pl. 9, figs.  1–5, pl. 10, figs. 1–4,
         pl. 11, figs. 2–5, pl. 12, figs.  1, 3, text-fig. 6–7 (with more complete
1985 “Quercus” cruciata A. Barun — Hably, p. 103, pl. 22,  figs. 1–4,
          pl. 23, figs. 1–4, text-fig. 17.
1995 Pungiphyllum cruciatum (Al. Braun 1851) nov. comb. — Franken-
          häuser & Wilde, p. 101.

Material: 39a, 50, 51, 52, 111, 112

The form of these enigmatic leaves varies in the number of

thorny simple lobes, which may be 0–3–5 in number on either
leaf side. The leaf margin is lamella-like thickened. Venation
craspedodrome-camptodrome. The five specimens at hand are
fragmentary, one more complete is without lobes, 7–8 cm long.

The affinities of this species remains obscure, although

previously it has been assigned to Ilex or Mahonia and to

The American oaks of the sect. Rubrae (e.g. Q. fal-


Michaux from  Atlantic North America) were brought

for comparison most frequently. However, the stomata do not
correspond to the type found in Quercus or Ilex (Kvaček &
Walther 1981). The Eocene records were separated into an
independent species Pungiphyllum waltheri Frankenhäuser
& Wilde (1995), which slightly differs by having shallowly
toothed margins. Pungiphyllum cruciatum occurs rarely in
the Oligocene and Early to Middle Miocene floras of Europe,
exceptionally in the younger Neogene (Givulescu & Olos
1973; Kolakovskij 1964).

“Celastrus” oxyphyllus 


Pl. V: Fig. 11

1850 Celastrus oxyphyllus Ung. — Unger, p. 177, pl. 51, figs.  22–24.
1969 Celastrus cf. oxyphyllus Unger, 1850 sensu Ettingshausen, 1877
          — Knobloch, p. 32, text-fig. 54.

Material: 25

Impression of a small coriaceous leaf, 2 cm long and 0.9

cm wide. Midrib straight, secondaries arising steeply in num-
ber of 6–7 pairs. Margin finely toothed or crenulate.

The impression is similar to the figure published by Unger

(1850) on the plate 51, fig. 24. Another similar fossil was re-
ported by Knobloch (1969) from the Early Miocene deposits
near Znojmo, South Moravia. The systematic position of all
these leaves remains obscure.



Pl. V: Fig. 10

Material: 185

Fragmentary elongate entire-margined leaf, 12 cm long

and ca. 3 cm wide. Midrib straight, thin, secondaries at the
angle of 80, regularly spaced, straight, looping close to the
margin. Tertiaries very irregular, forming irregular meshes
betwen the secondaries of different outlines and sizes.

The venation recalls some species of the genus Myrica,

e.g. M. integerrima Kr. & Weyl. Němejc & Knobloch (1973)
illustrate similar leaf impression as af. Quercus neriifolia Al.


Calamus noszkyi 


Pl. VI: Fig. 3

1914 Calamus noszkyi sp. n. — Jablonsky, p. 236–244, pl. 9,  figs. 1–3.
1960 Cyperites chavanensis Heer — Němejc, p. 113.
1973 Calamus noszkyi Jablonsky — Němejc & Knobloch, p. 721, pl.
          9,  figs., 3, 6.
1985 Calamus noszkyJablonsky — Hably, p. 120, 158, pl. 35,  fig. 3,
           pl. 36, figs. 3, 5, pl. 37, fig. 1.

Material: 32a, 148

Impressions of parallel-sided leaf segments 0.7–1.5 cm

wide with parallel venation. Finer veins are interspaced with
stronger veins on either side of the midrib. The complete leaf
is pinnately compound, leaflets subopposite, arising from the
rhachis at angles of about 30



Hably (1985) assumes that this plant occurs very frequent-

ly in Ipolytarnóc. In Lipovany these remains are quite rare.

is a thermophile element of humid tropical-subtrop-

ical climate.

Chamaerops helvetica 


Pl. VI, figs. 1, 2

1855 Chamaerops helvetica m. — Heer, p. 86, pl. 31–32.
1992 Chamaerops helvetica Heer — Schweigert, p. 26, pl. 6,  fig. 1.

Material: 130, 131, 190

Plate VI: Fig. 1.

 Chamaerops helvetica Heer, no. 131. Fig. 2.

Chamaerops helvetica 

Heer, no. 190. Fig. 3. Calamus noskyi

Jablonsky no. 148.

Plate V: Fig. 1.

 Cassia 196. Fig. 2. Leguminosites sp.,

no. 17. Fig. 3. Leguminosites sp., no. 38. Fig. 4. cf. Icaciniphyl-

, no. Fig. 5. Ternstroenites sp. 2


, no. 106. Fig. 6. Diospyros


Al. Br., no. 143. Fig. 7. Pungiphyllum cruciatum

(Al. Br.) Frankenhäuser & Wilde,no. 52. Fig. 8. Pungiphyllum cru-

(Al. Br.) Frankenhäuser & Wilde, no. 50. Fig. 9. Pungi-

phyllum cruciatum 

(Al. Br.) Frankenhäuser & Wilde, no. 51.

Fig. 10.

 Dicotylophyllum sp., no. 185. Fig. 11. “Celastrus” oxy-


Heer, 2


 no. 25. Fig. 12. Tetraclinis salicornioides (Ung.)

Kvaček, no. 57. Fig. 13. Pinus saturni Ung. no. 67.

Plate VII: Fig. 1.

 Arundo goepperti (Münster) Heer, no. 189. Fig. 2.

Cyclocarya cyclocarpa 

(Schlecht.) Knobloch no. 14. Fig. 3. Cyclo-

carya cyclocarpa 

(Schlecht.) Knobloch no. 15. Fig. 4. “Laurus” prin-


Heer (Němejc collection). Fig. 5. Platanus neptuni (Ett.) Bůžek,

Holý & Kvaček no. 79. Fig. 6. “Laurus” princeps Heer, no. 10.

background image

PLATE V                                                                                                275

background image

276                                                                                              PLATE VI

background image

PLATE VII                                                                                               277

background image

278                                                                                      SITÁR and KVAČEK

Impressions of basal parts of fan-like, palmately com-

pound leaves. In one specimen, the petiole about 24 cm long
and 6 cm wide, covered by thorny trichomes 5–6 mm long
has been preserved. Leaf lamina is composed of 15–20 seg-
ments that are coherent in the basal part and diverge towards
the leaf periphery. Venation parallel, composed of fine veins
of equal thickness.

 Chamaerops helvetica differs from Sabal (mostly reported

as Sabal major (Unger) Heer from the European Tertiary) by
small size, smaller number of leaf segments, the kind of ob-
tuse petiole attachment to the lamina (acute in Sabal) as well
as the thorny surface of the petiole. The fossil record of

is quite scanty. It is known for example from

the type localities Bollingen and Utznach in Switzerland
(Heer 1855), and from Engelwies west of Munich (Sch-
weigert 1992), both Early Miocene in age, like Lipovany.

Our material matches well the western Mediterranean

Chamaerops humilis 

L., which is a helophile and thermo-

phile element.


Arundo goeppertii 

(Münster) Heer

Pl. VII: Fig. 1

1839 Culmites Goepperti — Münster, p. 103, pl. 3, figs. 1–3,  pl. 4, figs. 1–2.
1847 Bambusina sepultum — Unger, p. 128, pl. 40.
1855 Arundo (Donax) Goepperti — Heer, p. 62, pl. 22, f. 3,  pl. 23.
1866 Arundo Goepperti Heer — Ettingshausen, p. 19, pl. 4,  figs. 1, 3–4.
1955 Arundo goepperti (Münst.) Heer — Andreánszky, p. 182.

Material: 189

Impression of the inner part of the axis, 2.5–3 cm wide.

Nodes are 9 cm apart, 0.4–0.5 cm in thickness. In the intern-
odes there is no structure visible, only near one node a faint
parallel venation.

Ribbon-shaped leaf fossils with parallel venation are more

commonly reported in the literature, but have not been found
at Lipovany. The genus Arundo (Poaceae) has been recorded
more often in Eocene to Pliocene deposits of Eurasia.

Species list of the flora of Lipovany

This species


& Knobloch (1973)





Woodwardia muensteriana
Pinus saturni
Tetraclinis salicornioides
Magnolia dianae

cf. mirabilis



cf. Nyssa sp.

Litsea ipolytarnocensis
“Persea” speciosa
“Laurus” primigenia


 sp. (“Laurus”  cf. primigenia)

“Laurus” princeps


cf. princeps


cf. braunii


cf. lalages


cf. heerii

Laurophyllum pseudoprinceps




cf. reussii

Daphnogene polymorpha

Daphnogene spectabile

Daphnogene polymorpha
f. bilinica

Daphnogene bilinica

Daphnogene polymorpha
f. bilinica

Daphnogene cinnamomifolia

Platanus neptuni


cf. sagoriana

Cyclocarya cyclocarpa

Cyclocarya cyclocarpa

Engelhardia orsbergensis

Engelhardia detecta

Engelhardia macroptera

Engelhardia macroptera


Caesalpinia norica
Cassia berenices

aff. Andromeda sp.

cf. Cassia sp.

“Robinia” regelii




sp. vel. Ziziphus sp.

Acer angustilobum
Sapindus falcifolius

cf. Icaciniphyllum sp.


cf. Diospyros brachysepala Diospyros brachysepala
Pungiphyllum cruciatum
“ Celastrus” oxyphyllus


aff. Quercus neriifolia
“ Notelaea” sp.

Calamus noszkyi

Calamus noszkyi

Chamaerops helvetica
Arundo goeppertii

Floristic relations

The species list of Lipovany (see table) includes less spe-

cies than that of Ipolytarnóc (Hably 1985, p. 123) but with
rare exceptions shares most taxa. Some discrepances may oc-
cur due to different nomenclature and splitting of form spe-
cies. This similarity was already stressed by Němejc & Kno-
bloch (1973) and Hably (1985). In both sites the
paleosubtropic element is well represented prevails while the
modern Arcto-Tertiary genera, like Acer, and Cyclocarya,
make only a fragment of the flora. Both sites represent a sin-
gle characteristic complex. Mai (1995) treats it within the
trans-European Paratethys bio (zoo) province in his floristic
complex Ipolytarnóc–Luzern, dated by mammals in the MN3
zone. The characteristics, he gives, fits well our data with
some corrections: lack of evergreen Fagaceae, lack of the
Mastixiaceae and Symlocaceae. These anomalies may arise
due to substratum conditions, because the mentioned groups
usually avoid volcanic environments. It is noteworthy, that
several species are shared across the bioprovince boundary.
In the North Bohemian Basin (also MN3 zone but Atlantic-
Boreal bioprovince) the following taxa occur infrequently:
Woodwardia muensteriana, Tetraclinis salicornioides, Lau-
rophyllum pseudoprinceps, Platanus neptuni, Engelhardia
macroptera, E. orsbergensis, Mahonia, Pungiphyllum. 


background image


to northerly position and different vegetation (mostly ripari-
an forests), deciduous elements prevail there. The flora of the
Sokolov Basin at the base of the Cypris shale is also a good
match (Bůžek et al. 1996). Tetraclinis, Platanus neptuni, En-

and Leguminosae are well represented there. This

complex is dated by mammals to the zone MN4. The floristic
characteristics of both mammal zones may not contribute
much to their differentiation. But warming trends within the
Eggenburgian surely culminate at the level of the Lipovany–
Ipolytarnóc floras. Logically, the late mastixioid floras of the
Eichelskopf–Wiese complex together with Schwandorf etc.
Mai (1995) would be contemporary. They also correspond to
a climatic optimum, but show few floristic links.

Vegetation and paleoecology

The absence of swampy and river-side elements in the fos-

siliferous strata at Lipovany suggests that the vegetation of
close surroundings thrived on mesic habitats. Deciduous
broad-leaved trees are represented by the fossil species of
Cyclocarya, Engelhardia, Cassia 

and other Leguminosae

and Pungiphyllum (?), as can be assumed from their thin leaf
lamina. Laurophyllous element and Platanus neptuni are
well represented. In the number of specimens Engelhardia

and Cassia berenices dominate in the assem-

blage. Hably (1985) also found in the sites near Ipolytarnóc
always one or a few species dominating in individual assem-
blages. She explains this apparent anomaly by distinct differ-
entiation of communities within the ancient plant cover. The
sedimentary setting, i.e. volcanic tuffitic deposits, suggest
very limited transport and hence limited mixing of source
vegetation as reflected in the fossil assemblage. But we hesi-
tate to use absolute numbers of leaf fossils for assessing
abundance, i.e. the frequency of trees. The Lipovany assem-
blage unites all three communities as defined by Hably
(1985) and stresses common aspects of vegetation within the
Ipolytarnóc/Lipovany complex. Palms, Engelhardia, Lau-
raceae, Platanus neptuni, Tetraclinis are components of No-
thophyllous Broad-leaved Evergreen Forest, as it is known
from some Late Mastixioid floras of Central Europe. The
volcanic environment, especially soils, may have influenced
the composition in that evergreen Fagaceae were lacking in
contrast  to sites in lignite basins. (In the Oligocene volcanic
floras of the České Středohoří Mts. the Fagaceae are also ex-
ceptional). The vegetation of the Lipovany site was apparent-
ly a multi storeyed forest with higher canopy occupied by
Platanus neptuni, Engelhardia 

and admixture of Pinus, low-

er tree storey with the Lauraceae, Tetraclinis, Magnolia, Cy-

and  Cassia  and the shrub storey with palms and

Lauraceae, together (?) with enigmatic Pungiphyllum,
Theaceae and “Celastrus”.

The forest was dense, not allowing herb undergrowth to

develop. We may visualize such conditions in humid sub-
tropical zone, such as on Atlantic coasts of the Canary Is-
lands or Florida.

Both the floristic composition and physiognomy of leaves

(size, margin) corroborate a humid subtropical climate.
Dominating species are all thermophilous, but certainly not

tropical. Leaf size varies between notophyllous and micro-
phyllous classes. In spite of the limited number of species,
we can estimate that entire-margined taxa make up more than
50 %. We agree with Hably (1985) in characterizing climatic
conditions before the end of the Early Miocene as corre-
sponding to the subtropical rain forest zone. In contrast to her
estimates, we expect a mean annual temperature of less than

(Hably 1985), which would mean tropical-paratropical

conditions. More realistic values would vary between 15–


, with the mean of the coldest month above 1


. Similar

climatic conditions are estimated for the zone Ng VI of the
floristic stratigraphy of Mai, which also corresponds with the
Ipolytarnóc/Lipovany complex in age (Mai 1995).


Braun A., 1845: Die Tertiär — Flora von Oeningen. Neu. Jb. Min.

Geogn. Geol. Petrefaktenkunde, (

Stuttgart), 1, 164–174.

Bůžek Č., Holý F. & Kvaček Z., 1967: Eine bemerkenswerte Art

der Familie Platanaceae Lindl. (1836) im nordböhmischen
Tertiär. Mber. Dtsch. Akad. Wiss. Berlin, 9, 3, 203–215.

Bůžek Č., Holý F. & Kvaček Z., 1996: Early Miocene flora of the

Cypris Shale (western Bohemia). Acta Mus. Nat. Prag. B,

52, 1–72.

Endlicher S., 1847: Synopsis Coniferarum. Scheitlin – Zollihofer,

St. Gallen., 1–269.

Ettingshausen C., 1851: Die tertiären Flora der Umgebung von

Wien.   Wien, 1–36.

Ettingshausen C., 1853: Die tertiäre Flora von Häring in Tirol.

Abh. K.-k

ön. Geol. Reichsanst. Wien, 2,1–118.

Ettingshausen C., 1866: Die fossile Flora des Tertiär — Beckens

von Bilin I., Wien, 98.

Frankenhäuser H. & Wilde V., 1995: Stachelspitzige Blätter aus

dem Mitteleozän von Eckfeld (Eifel). Abh. Staatl. Mus. Min-
eral. Geol. Dresden

,41, 97–115.

Givulescu R. & Olos E., 1973: Einige neue Taxa für den Fundort

Chiuzbaia. F. Memoires, vol. XIX., 35–46.

Hably L., 1980: Platanus neptuni (Ett.) Bužek, Holý & Kvaček in the

Hungarian Oligocene. Acta Bot. Acad. Sci. Hung. 26, 299–316.

Hably L., 1985: Early Miocene plant fossils from Ipolytarnóc, N.

Hungary.  Geologica Hung., Ser. Palaeontologica, Fas. 44


Heer O., 1855, 1856, 1859: Flora tertiäria Helvetiae I–III. Winter-

thur. (I: 1–111, II : 1–110, III : 201–378)

Iljinskaja I. A., 1953: Monografija roda Pterocarya Kunth. Trudy

bot. ins. Komarov 

10, 7–128.

Jablonsky J., 1914: Uber die mediterrane Flora von Tarnóc. Magy.


 Földt. Intéz. Évk., 22, 4, 227–274 (in Hungarian).

Jähnichen H., Mai D. & Walther H., 1977: Blätter und Früchte von

Engelhardtia Lesch. ex Blume (Juglandaceae) aus dem eu-
ropäischen Tertiär. Feddes Repertorium(Berlin), 88, 5, 6,

Kantor J. & Wiegerová V., 1988: Radiometric ages of some basalts of

Slovakia by 




K method. Geol. Carpathica, 32, 1, 29–34.

Knobloch E., 1961: Die oberoligozäne Flora des Pirskenbergs bei Šlu-

knov in Nord-Böhmen. Sbor. Geol. Věd, Paleont., 26, 241–315.

Knobloch E., 1969: Tertiäre Floren von Mähren. Moravské mus.,

musejní spolek, 

Brno, 1–201.

Knobloch E. & Kvaček Z., 1976: Miozäne Blätterfloren vom We-

strand der Böhmichen Masse. Rozpr. Ústř. Úst. Geol., 42, 1–131.

Kolakovskij A. A., 1964: Plicenovaja flora Kodora. Izd. Akad.

nauk Gruz., 

Suchumi, 1–207.

Kovar-Eder J., Kvaček Z., Zastavniak E., Givulescu R., Hably L.,

background image

280                                                                                      SITÁR and KVAČEK

Mihajlovic D., Teslenko Y. & Walther H. (in press): Floristic
trends in the vegetation of the Paratethys surrounding areas
during Neogene time. In: Bernor R. & Fahlbusch (Eds.): Lat-
er Neogene European biotic evolution and strtigraphic Corre-
lation. Columbia press.

Kräusel R. & Weyland H., 1950: Kritische Untersuchungen zur

Kutikularanalyse tertiären Blätter IV. Palaeontographica,
Abt. B (Stuttgart), 

105, 102–122.

Krištofovič A. N., 1956: Paleobotanika I. Moskva–Leningrad, 1–169.
Kvaček Z., 1986: The fossil Tetraclinis Mst. (Cupressaceae). Ča-

sopis nár. muzea v Praze, 

CLV, 1, 2, 45–53.

Kvaček Z. & Walther H., 1981: Studium über “Quercus” cruciata

Al. Braun und analoge Blattformen aus dem Tertiär Europas.
Abh. Staatl. Mus. Mineral. Geolog. Dresden. Acta Palaeobot,.
22, 2, 77–100.

Kvaček Z. & Bůžek Č., 1995: Endocarps and foliage of the flower-

ing plant family Icacinaceae from the Tertiary of Europe, Ter-
tiary Research

 15, 121–138.

Mai D. H. & Walther H., 1991: Die oligozänen Floren NW-Sachs-

ens und des Bitterfelder Raumes. Abh. Staatl. Mus. Mineral.
Geol., Dresden, 

38, 1–230.

Mai D.H., 1995: Tertiäre Vegetationsgeschichte Europas. Gustav

Fischer Verlag

, Jenapp, 1–691.

Manchester S.R., 1987: The fossil history of the Juglandaceae.

Monogr. Syst. Bot. Missouri Bot. Garden,


Němejc F., 1960: Zpráva o floristicko - stratigrafických výzku-

mech v neogénu karpatském. Zprávy o geol. výzk. v r. 1958,
Praha, 112–114.

Němejc F., 1967: Paleofloristické studie v neogénu Slovenska.

Sbor. nár. muzea v Praze

, Vol. XXIII, B, 1, 1–32.

Němejc F. & Knobloch E., 1973: Die Makroflora der Salgótarjáner

Schichtengruppe (Die Flora aus Lipovany). In: Cronostratig-
raphie und Neostratotypen, 

Bratislava, 694–738.

Pingen M., Fergusson D.K. & Collinson M.E., 1994: Homalanthus


 Mai: A new Miocene fruit of Cinnamomum Schaffer

(Lauraceae). Paleontogr. 232 B, 155–174.

Repčok J., 1987: Vek niektorých vulkanitov Krupinskej planiny,

Burdy a Cerovej vrchoviny metódou stôp po štiepení uránu.
Geol. Práce, Spr., 

86, 173–177.

Rögl F. & Steininger F., 1984: Neogene Paratethys. Mediterranean

and Indopacific Seaways, Implications for the paleobiogeog-
raphy of marine and terrestrial biotas. Fossils and Climate.
John Wiley and Sons Ltd., 

London, 171–200.

Saporta G., 1865: Études sur la végétation du Sud - Est de la France a l

époque Tertiaire, II. Ann. Sci. Nat. Bot., (Paris),  5, 4, 5–264.

Schweigert G., 1992: Die untermiozäne Flora (Karpatium MNS)

des Süßwasserkalkes von Engelswies bei Meßkirch (Baden -
Württemberg). Stuttgarter Beitr. Naturk. B, 188, 1–55.

Sitár V., Kvaček Z. & Bůžek Č., 1989: New late Neogene floras of

southern Slovakia (Pinciná and Hajnačka). Západ. Karpaty.
Ser. Paleont.,

 13, 43–59.

Unger F.,1838: Reise - Notizen vom Jahre 1838. Steiermark, Graz. 26–33.
Unger F.,1848: Chloris protogaea. Leipzig, 1–150.
Unger F.,1850: Genera et species plantarum fossilium. Vindobo-

nae, 1–627.

Unger F., 1861: Sylloge plantarum fossilium. Denkschr. Österr.

Akad. Wiss., Math.-Naturwiss. Kl., 

19, 1–38.

Vass D. & Elečko M., 1992: Explanations to the geological map of

Lučenecká kotliny Depression and Cerová vrchovina Upland.

 Bratislava, 1–196 (in Slovak).

Weber C.O., 1852: Über die Tertiärflora der niederrheinischen Braun-

kohlenformation. Palaeontographica,  2 Cassel, 115–236.

Wessel P. & Weber C.O., 1856: Neuer Beitrag zur Tertiärflora der

Niederrheinischen Braunkohlenformation. Palaeontographi-

4, Cassel, 111–130.

Weyland H., 1934: Beiträge zur Kenntniss der Rheinischen Tertiär-

floren I. Preuss. Geol. Land., Anst. N. F. 161. Berlin, 5–122.

 Weyland H., Kilpper K., 1963: Kritische Untersuchungen zur Ku-

tikularanalyse tertiärer Blätter VI. Palaeontographica, Abt. B
(Stuttgart), 113,