background image

GEOLOGICA CARPATHICA,  48, 4, BRATISLAVA,  AUGUST 1997

243–261

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN

SUCCESSION OF THE PIENINY KLIPPEN BELT

(WESTERN CARPATHIANS, SLOVAKIA)

MILAN SÝKORA

1

, LADISLAVA OŽVOLDOVÁ

1

 and DANIELA BOOROVÁ

2

1

Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic

2

Slovak Geological Survey, Mlynská dolina 1, 817 04 Bratislava, Slovak Republic

(Manuscript received March 7, 1997; accepted in revised form June 24, 1997)

Abstract: 

Silicified sediments, which occur from the Albian to the Campanian in the Czorsztyn Succession of the

Pieniny Klippen Belt are known in several stratigraphic horizons in Slovak and Polish territory. The studied section,
situated in Vršatec Castle Klippe contains the sediments of ?Upper Berriasian–Lower Campanian age. The silicified
sequence is represented by cherty limestones and silicified marls with rich assemblages of foraminifers
(Helvetoglobotruncana helvetica Zone) and radiolarians (Superbum Zone sensu O´Dogherty 1994) of Early Turonian
(except for the lowermost part)–?Middle Turonian age. The new radiolarian species Patellula andrusovi Ožvoldová,
n. sp. was described there.

Key words: 

Cretaceous, Western Carpathians, Pieniny Klippen Belt, Czorsztyn Succession, silicified sediments,

radiolarians, foraminifers.

ern of the village of Krempachy (Birkenmajer 1958). Birken-
majer (1963) assumed that they are of the Early Turonian
age. He also described the black-blue and greenish-black
(sometimes yellow-green) radiolarian shales with calcified
tests of radiolarians of the Early Turonian age in the Szaflary

Introduction

A few horizons formed by silicified sediment with cherts, of-
ten with an abundance of radiolarian tests were distinguished
in Albian–Campanian sequences of the Czorsztyn Succes-
sion of the Pieniny Klippen Belt on the territory of Poland
and Slovakia.

Our research on the studied section, situated 400 m SW

from Vršatecké Podhradie village (Fig. 1) had the aim of es-
tablishing the lithological and stratigraphic characteristics of
the silicified horizon and the surrounding rocks. A line of the
section partly covered by a thin layer of slope debris has
been excavated.

The foraminiferal microfauna was determined mostly in

the thin sections. The radiolarians and silicified foraminifers
were retrieved from the samples by dissolving the rock ma-
trix in acetic acid (negative results) and in hydrofluoric acid
(rich microfauna). They were observed using the scanning
electron microscope.

Summary of existing knowledge

The oldest horizon (see Fig. 2) of the silicified and radi-

olaria bearing sediments in the deposits of the Albian–Cam-
panian interval belongs to the lower member of the
Pomiedznik Formation (Birkenmajer 1977), which is repre-
sented by green, black, often spotty and silicified marly lime-
stones with lenticles and intercalations of the greenish,
brownish, reddish and black radiolarian cherts. They are of
the Late Albian age (Birkenmajer & Jednorowska 1987).

The cherty limestones of greenish, pinkish and yellow-

greenish colour were found in the locality Krety creek, south-

Fig. 1

. Location of the studied section.

background image

244                                                                        SÝKORA, OŽVOLDOVÁ and BOOROVÁ

quarry. Both sequences represent the Altana Shale Bed
(Birkenmajer 1977, see below).

Salaj (1961) and Samuel (1962) distinguished the beds by

the amount of the radiolarian microfauna on the boundary of
the Middle and Upper Cenomanian in the western and east-
ern part of the Pieniny Klippen Belt on the Slovak territory.

South of the village Krempachy (the Krety and Ki-

zlinkowy creeks) Alexandrowicz (1966) and Birkenmajer
(1958, 1963) described: a/ beds with a greater content of ra-
diolarians and the layer of the light-red chert limestone in the
sequence of the variegated marls and marly limestones (Glo-
botruncanian Variegated Marls sensu Birkenmajer in Koko-
szynska & Birkenmajer 1956) and b/ intercalations of cherty
limestones or cherts in the sequence of the brick-red marls.

He assigned both these horizons with radiolarians to the

Upper Cenomanian.

In 1968 Alexandrowicz et al. identified two radiolarian ho-

rizons: the “cherry red marls” with the Cenomanian micro-
fauna with the intercalations of the radiolarian shales in the
Dolný Mlyn Klippe, north of Stará Turá town and the green
spotted marls and marly limestones with cherts (0.5 m thick)
resembling the lower Pomiedznik Beds (Birkenmajer 1963)
of the Albian age in the road cutting beneath Vršatec Castle.

In the previous locality the violet-red and greenish marls

with intercalations of cherty limestones of the Turonian
(?Late Cenomanian) age was also found by Andrusov &
Samuel (1973).

Birkenmajer (1977) distinguished numerous lithostrati-

graphic units in the Pieniny Klippen Belt. The sequence,
which has the stratigraphical range — upper part of the Low-
er Cenomanian–Maastrichtian was named by this author —
Jaworki Marl Formation (now — Jaworki Formation). In the
Czorsztyn Succession this formation is divided into Bryncz-
kowa Marl Member, Skalski Marl Member, Macelowa Marl
Member and Pustelnia Marl Member.

In the Brynczkowa Marl Member the silicification is quite

exceptional (l.c.).

The Skalski Marl Member contains the Lorencowe Chert

Bed and Altana Shale Bed (l.c.). The first one is represented
by green-pinkish and yellow-greenish radiolarian and fora-
miniferal silicified limestone with cherts (Birkenmajer
1977), light-green silicified limestone and variegated (mostly
red) marl (M. Bak 1996). The Altana Shale Bed is character-
ized by black-blue and greenish-black (sometimes
yellow-green) shale with the calcified radiolarians (Birken-
majer 1977), black, blue-greenish and olive-green marly

Fig. 2.

 Correlation of lithostratigraphical units (Berriasian–Maastrichtian) in the Czorsztyn Succession of the Pieniny Klippen Belt in the

Polish and Slovak territory.

background image

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN SUCCESSION OF THE PIENINY KLIPPEN BELT            245

shale (M. Bak 1996). According to Alexandrowicz (1966),
Alexandrowicz et al. (1968) and Birkenmajer (1977) both
beds belong to the Upper Cenomanian.

Later Jednorowska (1979) revised the stratigraphical posi-

tion of the Lorencowe Chert Bed according to a new determi-
nation of the foraminiferal microfauna from the marl, which
was associated with this chert beds in the locality Krety
creek, south of Krempachy village. The new age of this beds
was established on the boundary Santonian-Campanian.

According to this data Birkenmajer & Jednorowska (1987)

transformed the assignation of the Lorencowe Chert Bed
from the Skalski Marl Member into Pustelnia Marl Member.

K. Bak (1994) and M. Bak (1994) confirmed the new

stratigraphical position of the Lorencowe Chert Bed on the
boundary Santonian-Campanian.

The Late Cenomanian age of Altana Bed was confirmed

by K. Bak (1995) and M. Bak (1996).

The first results of radiolarian research from the Late Creta-

ceous sediments of the Czorsztyn Succession which belong to
the Skalski Marl Member (Altana Shale Bed), Macelowa Marl
Member and Pustelnia Marl Member (Lorencowe Chert Bed)
of the Jaworki Formation were obtained by M. Bak (1996).

The lithostratigraphical characteristic

of the studied section

The oldest stratigraphical horizon of the studied section

(Fig. 3) is light-grey to grey organodetrital limestone.

The uppermost part of the sequence — (samp.1) is formed

by carbonate breccia (several cm thick). It contains lithoclasts
of biomicrites-wackestones with calcified radiolarians, ammo-
nites, foraminifers (Globuligerina sp., Ophthalmidium sp.,
Lenticulina

 sp.), echinoderm ossicles and lamellibranchs, as

well as biomicrites with calpionels — Calpionella alpina
Lorenz, Crassicollaria sp., of the Tithonian–Berriasian age.
The margin of the lithoclasts are uneven, the surface is very
often dissected. At the same time the contact with the lime-
stone, which forms the matrix of the breccia is often indistinct,
therefore the main distinguishing mark between the lithoclasts
mutually and the breccia matrix is the assemblage of microfos-
sils. The age of the breccia is probably  Late Berriasian–Val-
anginian (the youngest age of the lithoclasts is Late Tithonian–
Early Berriasian).

These rocks were also identified by Scheibnerová (1969)

and Mišík (1979). Scheibnerová (l.c.) assigned the youngest
limestones of the Upper Jurassic and Lower Cretaceous in
the Vršatec Castle Klippe to the Spisz Limestone Formation
(Birkenmajer 1960 in Birkenmajer 1977).

Andrusov (in Andrusov & Samuel 1973) and also Mišík

(1979) attributed them to the Lysa Limestone (Birkenmajer
& Gasiorowski 1961), (later Lysá Limestone Formation ac-
cording to Birkenmajer 1977).

In the uppermost parts of the breccia the unevennesses are

filled up with a darker-grey biodetrital limestone with a clas-
tic admixture (Fig. 3, samp. 2a), the assignation of which to
the overlying Chmielowa Formation is questionable. It con-
tains an association of planktonic and benthic foraminifers
(Fig. 4, thin s. 22799, 23837), (Pl. I: Fig. 1; Pl. VI: Fig. 1).

The planktonic specimens include a great number of repre-
sentatives of the genus Hedbergella sp., Biticinella breggien-
sis 

(Gandolfi),  Planomalina (Planomalina) buxtorfi (Gan-

dolfi), Planomalina (Globigerinnelloides) sp. and frequent
representantives of the genus Ticinella sp.

Fig. 3.

 Lithostratigraphic column of the studied section with the

location of the samples.

background image

246                                                                        SÝKORA, OŽVOLDOVÁ and BOOROVÁ

Fig. 4.

 Distribution of foraminiferal microfauna in the samples of the studied section.

Sample

4

5

6

8

thin s.

thin s.

thin s.

thin s.

thin s.

thin s.thin s.thin s.

thin s.

thin. s.

thin. s

22799 27799 22980 22977 22975

22983 22982

22801 22978 22973

22976

23837 22981 23838 23840

22804

23839

22797

22796

 Foraminiferal microfauna

 Biticinella breggiensis (GANDOLFI)

x

x

 Clavihedbergella sp.

x

 Dicarinella biconvexa (SAMUEL - SALAJ)

x

x

x

x

x

 Dicarinella biconvexa gigantea (SAMUEL - SALAJ)

x

x

 Dicarinella carpathica (SCHEIBNEROVÁ)

x

 Dicarinella hagni (SCHEIBNEROVÁ)

x

x

x

x

x

 Dicarinella imbricata (MORNOD)

x

x

x

x

x

 The transitional form between D. imbricata (MORNOD)

 and D. hagni (SCHEIBNEROVÁ)

x

x

 Dicarinella oraviensis oraviensis (SCHEIBNEROVÁ)

x

x

x

x

x

x

 Dicarinella oraviensis trigona (SCHEIBNEROVÁ)

x

x

x

x

 Dicarinella sp.

x

x

x

x

x

 Dorothia oxycona (REUSS)

x

 Dorothia sp.

x

x

x

x

 Dorothia trochus (D´ ORBIGNY)

x

 Falsomarginotruncana coronata (BOLLI)

x

 Falsomarginotruncana pseudolinneiana (PESSAGNO)

x

 Falsomarginotruncana renzi (GANDOLFI)

x

 Falsomarginotruncana sinuosa (PORTHAULT)

x

 The transitional form between F. sinuosa (PORTHAULT)

 and F. angusticarinata (GANDOLFI) 

x

 Gaudryina sp.

x

 Globotruncana arca (CUSHMAN)

x

 Globotruncana cf. arca (CUSHMAN)

x

 Globotruncana linneiana (D´ ORBIGNY)

x

 Gyroidina sp.

x

x

 Hedbergella delrioensis (CARSEY)

x

x

x

 Hedbergella globigerinellinoides (SUBBOTINA)

x

 Hedbergella planispira (TAPPAN)

x

x

x

 Hedbergella sp. 

x

x

x

x

x

x

x

x

x

x

x

 Helvetoglobotruncana helvetica (BOLLI)

x

x

x

 Helvetoglobotruncana praehelvetica (TRUJILLO)

x

 Heterohelix globulosa (EHRENBERG)

x

x

 Heterohelix reussi (CUSHMAN)

x

 Heterohelix sp.

x

x

x

x

x

x

x

 Lenticulina macrodisca (REUSS)

x

 Lenticulina secans (REUSS)

x

 Lenticulina sp.

x

x

x

 Osangularia infracretacea BUKALOVA

x

 Planomalina (Planomalina) buxtorfi (GANDOLFI)

x

x

 Planomalina (Globigerinelloides) sp.

x

x

x

x

x

x

x

 Pleurostomella sp.

x

 Praeglobotruncana delrioensis (PLUMMER)

x

x

 Praeglobotruncana sp.

x

x

 Praeglobotruncana stephani (GANDOLFI)

x

x

 Praeglobotruncana cf. stephani (GANDOLFI)

x

 Schackoina bicornis REICHEL

x

 Schackoina sp.

x

 Thalmanninella appeninnica (RENZ)

x

 Thalmanninella appenninica balernaensis (GANDOLFI)

x

 Thalmanninella brotzeni (SIGAL)

x

 Thalmanninella deeckei (FRANKE)

x

 Thalmanninella sp.

x

 Thalmanninella ticinensis ticinensis (GANDOLFI)

x

 Ticinella sp.

x

 Whiteinella gandolfi GAŠPARIKOVÁ and SALAJ

x

 Whiteinella gigantea (LEHMAN)

x

x

 Whiteinella cf. inornata (BOLLI)

x

 Whiteinella sp. 

x

x

x

x

background image

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN SUCCESSION OF THE PIENINY KLIPPEN BELT            247

The benthic part of the association is represented by Dor-

othia

 sp., Gaudryina sp., Gyroidina sp., and frequent speci-

mens of the genus Lenticulina (L. macrodisca (Reuss), L. se-
cans

 (Reuss)) and Osangularia infracretacea Bukalova. The

occurrence of the genus Thalmanninella is uncertain.

The association indicates the Late Albian age — Planoma-

lina (Planomalina) buxtorfi–Thalmanninella appenninica
balernaensis foraminiferal Zone (according to Maamouri et
al. 1994).

Apart from foraminifers, echinoderm ossicles (usually bored

by algae, Pl. I: Fig. 1), echinoid spines, fish teeth and bones
(Pl. I: Fig. 2) with sporadic tests of ostracods occur there.

The terrigenous admixture is formed by clastic undulatory

quartz (0.05–0.47 mm) about 1 %. Sporadic grains of glauco-
nite and phosphates were found.

This limestone, which merges in colour with the underly-

ing breccia of the Lysa Limestone Fm. is several milimeters
or centimeters thick.

The above mentioned data show that there is a hiatus be-

tween the Upper Berriasian or Valanginian and the Upper Al-
bian. A part of sediments was probably removed by dissolu-
tion and erosion.

The Upper Albian grey limestone is covered by a thin bed

of Mn-Fe crust (up to 3 mm thick), which is of stromatolitic
character — hard ground. This break lasted for a short time
as the crust is covered by red and reddish-grey fine-grained
limestone (20 cm), which again contains an assemblage of
Late Albian foraminifers. In contrast to the underlying grey
limestone, which is its age equivalent, the red limestone is
formed by biomicrite-wackestones and packstones (Fig. 3,
samp. 2b). It is composed mainly of foraminifers, thin-
walled pelecipods and brachiopods, sporadic echionoid
spines, echinoderm ossicles, teeth of fish, tests of ostracods
and cadosins (Cadosina semiradiata Wanner). Clastic quartz
(silt size) rarely occurs there. The red limestone belongs to
the Chmielowa Formation (Birkenmajer 1977).

The foraminiferal assemblage (Fig. 4, thin s. 27799,

22981, 23839, Pl. VI: Fig. 2) represents the same stratigraph-
ic interval — Planomalina (Planomalina) buxtorfi–Thalman-
ninella appenninica balernaensis foraminiferal Zone of the
Late Albian age, but it is enriched by further planktonic fora-
minifers as: Biticinella breggiensis (Gandolfi) (Pl. VI:
Fig. 4), 

Hedbergella delrioensis

 (Carsey), H. globigerinelli-

noides

 (Subbotina), H. planispira (Tappan), Hedbergella sp.,

Planomalina (Planomalina) buxtorfi

 (Gandolfi) (Pl. VI:

Fig. 3; Pl. VII: Fig. 2), Praeglobotruncana delrioensis
(Plummer), 

P. stephani

 (Gandolfi) (Pl. VII: Fig. 3), Thalman-

ninella appenninica balernaensis

 (Gandolfi), (Pl. VI: Fig. 6)

T. ticinensis ticinensis

 (Gandolfi) (Pl. VI: Figs. 2, 5), Thal-

manninella 

sp., Whiteinella gandolfi Gašpariková & Salaj.

The benthic specimens are represented by Dorothia oxycona
(Reuss), (Pl. VI: Fig. 2), D. trochus (D´Orbigny), Dorothia
sp., Gyroidina sp., Lenticulina sp. and Pleurostomella sp.

Some hundred meters north of our section Mišík (1979)

also mentioned Lower Albian red limestones with depres-
sions, unevennesses and neptunic dykes on the older lime-
stones. Scheibnerová (1969) described here reddish-violet,
reddish-brown marly limestones (20–25 cm thick) containing
the rostra of Neohibolites minutus Lister and the reddish

small cherts in the same stratigraphical position. They gradu-
ally pass into the Lower to Middle Cenomanian marly lime-
stones according to this author.

The Upper Albian limestones are overlain by thin layers of

the brownish-red to brick-red marly limestones (Fig. 3,
samp. 2c). They are packstones (Pl. I: Fig. 3) with abundant
foraminiferal fauna, sporadically with fragments of fish
scales and teeth and also with segments of lamellibranch os-
tracum of the genus Inoceramus. The clastic quartz admix-
ture (silt and very fine sand) occurs there. Their assignation
to the Chmielowa Formation is also questionable.

In the rich foraminiferal association (Fig. 4, thin s. 22980,

23838) planktonic specimens prevail — Hedbergella delrioen-
sis

 (Carsey), H. planispira (Tappan), Hedbergella sp., Pla-

nomalina

 (Globigerinelloides) sp., Praeglobotruncana delri-

oensis

 (Plummer), P. stephani (Gandolfi), Praeglobotruncana

sp., Thalmanninella appenninica (Renz) (Pl. VII: Fig. 5), T.
brotzeni

 (Sigal) (Pl. VII: Figs. 1, 4, 6), T. deeckei (Franke).

The benthic foraminifers are rare and they are represented by
the genus as: Dorothia Plummer and Lenticulina Lamarck.
This association corresponds to the Thalmanninella deeckei
foraminiferal Zone (according to Salaj 1996) and indicates the
upper part of Early Cenomanian.

Greyish-red to brick-red marls (1 m thick) (beginning of

Skalski Marl Member of Jaworki Formation sensu Birken-
majer 1977) (Fig. 3, samp. 3) overlie the red marly lime-
stones. Apart from the amount of foraminiferal fauna (Fig. 4,
thin s. 22977, 23840) they contain fish scales, ostracum seg-
ments of the genus Inoceramus and ostracods and clastic
quartz admixture (silt size).

The planktonic foraminiferal species and genera — Dicar-

inella biconvexa

 (Samuel & Salaj), D. hagni (Scheibnerová),

D. imbricata

 (Mornod), D. oraviensis oraviensis (Scheibner-

ová),  Hedbergella planispira (Tappan), Hedbergella sp.,
Heterohelix

 sp., Planomalina (Globigerinelloides) sp., Prae-

globotruncana

 cf. stephani (Gandolfi), Whiteinella sp. pre-

vail in the association. The benthic specimens are represent-
ed by Dorothia sp. and Lenticulina sp. The composition of
the assemblage represents the Helvetoglobotruncana helveti-
ca foraminiferal Zone (Salaj 1996).

Plate I: Fig. 1.

 Association of microfossils (see echinoderm ossicle

bored by algae) in biomicrite-wackestone, Upper Albian, samp. 2a,
thin s. 22799, 27

×

Fig. 2. Fragment of fish bone in wackestone. Up-

per Albian, samp. 2a, thin s. 22799, 45

×

Fig. 3. Foraminiferal pack-

stone with Thalmanninella deeckei (Franke). Lower Cenomanian,
samp. 2c, thin s. 22980, 27

×

Fig. 4. Bioturbation and lamina in si-

licified limestone, lower Turonian (except for the lowermost part)–
?middle Turonian, samp. 4, thin s. 22975, 27

×

.

Plate II: Fig. 1.

 Radiolarian biomicrite-wackestone with foramini-

fers. early Turonian (except for the lowermost part)–?middle Turo-
nian, samp. 5, thin s. 22983, 27

×

Fig. 2. Radiolarian biomicrite-

wackestone with Dicarinella oraviensis oraviensis (Scheibnerová),
early Turonian (except for the lowermost part)–?middle Turonian,
samp. 5, thin s. 22983, 27

×

Fig. 3. Lamination in silicified lime-

stone, early Turonian (except for the lowermost part)–?middle Turo-
nian, samp. 5, thin s. 22983, 27

×

Fig. 4. Falsomarginotruncata sin-

uosa

 (Dorthault) and segment of ostracum of Inoceramus,

Coniacian, samp. 9, thin s. 22973, 45

×

.

background image

248                                                                                                PLATE  I

3

4

background image

PLATE  II                                                                                               249

background image

250                                                                         SÝKORA, OŽVOLDOVÁ and BOOROVÁ

A similar succession was described by Andrusov (in An-

drusov & Samuel 1973). The Albian limestones (Chmielowa
Fm.) with the genus Ticinella are followed by red marls of
Middle Turonian age.

Sequence of Skalski Marl Member of Jaworki Formation

continues with grey-greenish silicified limestones with
brownish-red cherts (0.5 m thick) (Fig. 3, samp. 4), which
contain radiolarians and silicified foraminifers (Fig. 4,
samp. 4, thin s. 22975). These sediments are laminated and
rarely bioturbated (Pl. I: Fig. 4). They are overlain by light-
grey-green silicified limestones and silicified marly lime-
stones with grey-green and yellowish cherts (4–5 m thick)
(Fig. 3, samp. 5, 6, 7) and with frequent parallel lamination
(some laminae with predominance of silica) (Pl. II: Fig. 3).
These sediments contain abundant silicified foraminifers and
radiolarians (Pl. II: Figs. 1, 2).

The uppermost part of this silicified horizon is of grey-red

colour and forms the transitional beds with the overlying
light-grey-red and red marls (Fig. 3, samp. 8). It contains the
abundance of radiolarians, which prevail over foraminifers.
Sporadically clastic quartz admixture (silt) was found.

The foraminiferal microfauna in the samples 4–8 was ana-

lyzed from the thin sections (Fig. 4, thin s. 22975, 22983,
22982, 22801, 22804, 22797, 22796, 22978), (Pl. VIII) and
from the residuum as well (Fig. 4, samp. 4–6, 8), (Pl. IX). It
contained planktonic specimens only. Benthic specimens are
very rare.

The composition of the assemblages indicates the same Hel-

vetoglobotruncana helvetica foraminiferal Zone as sample 3.
According to Salaj (1996) this zone represents Middle Turoni-
an, but the latest biozonation of Robaszynski & Caron (1995)
assigns it to the stratigraphic range — early Turonian (except
for the lowermost part)–middle part of middle Turonian.

For the evaluation of the radiolarian microfauna (Fig. 5,

samp. 5, 6, 8) (Pl. III–V) the detailed radiolarian zonation of
O´Dogherty (1994), worked out for the middle Cretaceous of
the Western Mediterranean was used. According to this zo-
nation the associations represent the Superbum Zone, which
begins in the lowermost Turonian. The top of this zone has
not been recognized in this work. This zone is characterized
by the first appearence of many species in  the lower part and
by the extinction of only a few species. The faunal changes
of this zone reflect the favourable life conditions after a ma-
jor interval of anoxia (l.c.).

The Superbum Zone comprises Unitary Associations UA

20 (in the lower part) and the overlying — UA 21. The index
taxon of this zone is Alievium superbum (Squinabol). In the
samp. 6 (Fig. 5) similar species with the broken spines oc-
curred (A. cf. superbum, Pl. III: Fig. 10). Further species —
Acanthocircus tympanum

 O´Dogherty, A. venetus (Squin-

abol), Cavaspongia antelopensis Pessagno, Crucella cachen-
sis

 Pessagno, Dictyomitra undata Squinabol and Patellula

ecliptica

 O´Dogherty also appear in UA 20. The species Dic-

tyomitra montisserei

 (Squinabol) finishes in the same Uni-

tary Association, but Dictyomitra multicostata Zittel, which
appears in the following UA 21 can rarely be observed in
samp. 8 (Fig. 5; Pl. IV: Fig. 14).

Plate V:

 Radiolarian microfauna in silicified limestone and marl —

early Turonian (except for the lowermost part)–?middle Turonian.
Fig. 1.

 Dictyomitra montisserei (Squinabol) — samp. 6, 3345, 200

×

.

Fig. 2.

 Dictyomitra montisserei (Squinabol) — samp. 8, 4612, 140

×

.

Fig. 3.

 Dictyomitra montisserei (Squinabol) — samp. 6, 3144, 195

×

.

Fig. 4.

 Dictyomitra montisserei (Squinabol) — samp. 5, 3367, 250

×

.

Fig. 5.

 Dictyomitra montisserei (Squinabol) — samp. 8, 4601, 270

×

.

Fig. 6.

 Dictyomitra montisserei (Squinabol) — samp. 8, 4609, 170

×

.

Fig. 7.

 Stichomitra communis Squinabol — samp. 6, 3155, 130

×

.

Fig. 8.

 Dictyomitra undata Squinabol — samp. 6, 3347, 195

×

Fig.

9.

 Dictyomitra undata Squinabol — samp. 5, 3370, 220

×

. Fig. 10.

Pseudodictyomitra pseudomacrocephala

 (Squinabol) — samp. 6,

3176, 200

×

Fig. 11. Dictyomitra cf. formosa Squinabol — samp. 8,

4627, 250

×

Fig. 12. Dictyomitra formosa Squinabol — samp. 5,

3362, 180

×

Fig. 13. Diacanthocapsa sp. — samp. 8, 4604, 280

×

.

Fig. 14.

 Diacanthocapsa ovoidea Dumitrica — samp. 8, 4647,

250

×

Fig. 15. Cryptamphorella conara (Foreman) — samp. 6,

3348, 350

×

. Fig. 16. Cryptamphorella conara (Foreman) — the api-

cal view of Fig. 15, samp. 6, 3349, 350

×

. Fig. 17. Diacanthocapsa

cf.  brevithorax Dumitrica — samp. 8, 4605, 300

×

Fig. 18. Sti-

chomitra stocki

 (Campbell & Clark) — samp. 5, 3380, 280

×

. Fig.

19.

 Gen. et sp. indet. — samp. 8, 4593, 240

×

.

Plate IV:

 Radiolarian microfauna in silicified limestone and marl

— early Turonian (except for the lowermost part)–?middle Turo-
nian.  Figs. 1–7, 9, 11 Patellula andrusovi Ožvoldová. n.sp.,
samp. 8: 1 — 0695, 140

×

; 2 — the lateral view of Fig. 5, 4654,

120

×

; 3 — 3156, 160

×

; 4 — 4651, 130

×

; 5 — holotype, 4655,

120

×

; 6 — the lateral view of Fig. 3, 3158, 165

×

; 7 — 4642, 135

×

;

9 — the lateral view of Fig. 3, 3159, 170

×

; 11 — 0698, 180

×

Fig.

8.

 Patellula sp. A — samp. 6, 3154, 185

×

Fig. 10Patellula eclip-

tica

 O´Dogherty — samp. 6, 3150, 165

×

Fig. 12. Patellula sp. B

— samp. 8, 4644, 170

×

Fig. 13. Patellula sp. B — the lateral view

of Fig. 12, samp. 8, 4643, 170

×

Fig. 14. Dictyomitra multicostata

Zittel — samp. 8, 0697, 220

×

Fig. 15. Pseudodictyomitra

pseudomacrocephala

 (Squinabol) — samp. 5, 3361, 120

×

Fig. 16.

Stichomitra stocki

 (Campbell & Clark) — samp. 6, 3354, 400

×

.

Fig. 17.

 Holocryptocanium barbui Dumitrica — samp. 5, 3364,

160

×

. Fig. 18. Ultranapora cf. dumitricai Pessagno — samp. 6,

3187, 250

×

.

Plate III:

 Radiolarian microfauna in silicified limestone and marl

— early Turonian (except for the lowermost part)–?middle Turo-
nian. Fig. 1. Acanthocircus venetus (Squinabol) — samp. 6-3009,
150

×

Fig. 2. Acanthocircus venetus (Squinabol) — samp. 8, 4626,

150

×

.  Fig. 3. Acanthocircus tympanum O´Dogherty — samp. 8,

4649, 180

×

Fig. 4. Vitorfus campbelli Pessagno — samp. 6,

3291,195

×

Fig. 5. Archaeocenosphaera? mellifera O´Dogherty

— samp. 8, 4625, 165

×

Fig. 6. Praeconocaryomma lipmanae Pes-

sagno — samp. 6, 3352, 190

×

Fig. 7. Pessagnobrachia fabianii

(Squinabol) — samp. 6, 3142, 90

×

Fig. 8. Pseudoaulophacus pu-

tahensis

 Pessagno — samp. 6, 3005, 130

×

Fig. 9. Cavaspongia

sp. — samp. 8, 4614, 140

×

Fig. 10. Alievium cf. superbum

(Squinabol) — samp. 6, 3357, 200

×

. Fig. 11. Cavaspongia ante-

lopensis

 Pessagno — samp. 6, 3299, 160

×

Fig. 12. Patellula cf.

heroica

 O´Dogherty — samp. 8, 4638, 170

×

Fig. 13. Pseudoaulo-

phacus putahensis

 Pessagno — samp. 8, 4611, 200

×

Fig. 14. Cru-

cella cachensis

 Pessagno — samp. 6, 3341, 135

×

Fig. 15. Patellu-

la ecliptica

 O´Dogherty — samp. 6, 3143, 150

×

Fig. 16. Patellula

cf. heroica O´Dogherty — samp. 8, 4645,150

×

Fig. 17. Patellula

ecliptica

 O´Dogherty — samp. 6, 3173, 150

×

Fig. 18. Patellula

ecliptica

 O´Dogherty — samp. 8, 4598, 170

×

Fig. 19. Patellula

ecliptica

 O´Dogherty — samp. 6, 3358, 135

×

Fig. 20. Patellula

ecliptica

 O´Dogherty — samp. 6, 3329, 165

×

.

background image

PLATE  III                                                                                               251

background image

252                                                                                               PLATE  IV

background image

PLATE  V                                                                                               253

background image

254                                                                        SÝKORA, OŽVOLDOVÁ and BOOROVÁ

Plate VI: Fig. 1.

 Association of planktonic and benthonic forams of Planomalina (Planomalina) buxtorfi – Thalmanninella appenninica bal-

ernaensis Zone, Late Albian, thin s. 22799, 45

×

. Fig. 2. Dorothia oxycona (Reuss) — below Thalmanninella ticinensis ticinensis (Gandolfi)

— center, Late Albian, thin s. 22799, 45

×

Fig. 3. Planomalina (Planomalina) buxtorfi (Gandolfi), Late Albian, thin s. 22799, 130

×

Fig. 4.

Biticinella breggiensis

 (Gandolfi), Late Albian, thin s. 22799, 127

×

Fig. 5. Thalmanninella ticinensis ticinensis (Gandolfi), Late Albian,

thin s. 22799, 127

×

. Fig. 6. Thalmanninella appenninica balernaensis (Gandolfi), Late Albian, thin s. 22799, 125

×

.

background image

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN SUCCESSION OF THE PIENINY KLIPPEN BELT            255

Plate VII: Figs. 1, 4, 6.

 Thalmanninella brotzeni (Sigal), thin s. 22980. Fig. 1 — 218

×

,  Fig. 4 — 185

×

, Fig. 6 — 130

×

. Thalmanninella

deeckei Zone, upper part of Early Cenomanian. Fig. 2.  Planomalina (Planomalina) buxtorfi (Gandolfi), thin s. 22981, 175

×

, Planomali-

na (Planomalina) buxtorfi–Thalmanninella appenninica balernaensis Zone, Late Albian. Fig. 3. Praeglobotruncana stephani (Gandolfi)
thin s. 22981, 170

×

, Zone see Fig. 2. Late Albian. Fig. 5. Thalmanninella appenninica (Renz), thin s. 22980, 125

×

, Thalmanninella

deeckei Zone, upper part of Early Cenomanian.

background image

256                                                                        SÝKORA, OŽVOLDOVÁ and BOOROVÁ

The associations, therefore, can be assigned to the early

Turonian (except for the lowermost part). The presence of
middle Turonian is questionable.

It can be confirmed by the investigation of Thurow (1988)

that the species Pseudodictyomitra pseudomacrocephala
(Squinabol) (Pl. V: Fig. 10) finishes above the top boundary of
CTBE (Cenomanian-Turonian Boundary Event, which com-
prises the uppermost part of Cenomanian and the lowermost
part of Turonian) and the species Dictyomitra multicostata Zit-
tel (Pl. IV: Fig. 14) appears a little below this boundary.

In the overlying complex of the red marls (Fig. 3, samp. 9,

10) (Pustelnia Marl Member of Jaworki Formation sensu
Birkenmajer 1977) the sediments contain foraminiferal asso-
ciations, fish remnants and ostracum segments of the genus
Inoceramus

. Terrigenous silt quartz was rarely found.

In sample 9 the foraminiferal microfauna (Fig. 4, thin s.

22973) is represented by the planktonic specimens only —
Falsomarginotruncata coronata

 (Bolli), F. pseudolinneiana

(Pessagno) (Pl. X: Fig. 3), the transitional form between F. sin-
uosa

 (Porthault) and F. angusticarinata (Gandolfi) (Pl. X: Fig.

4), F. sinuosa (Porthault) (Pl. II: Fig. 4), Heterohelix sp., Hed-
bergella delrioensis

 (Carsey), Hedbergella sp., Whiteinella cf.

inornata

 (Bolli), Whiteinella sp. Benthic specimens are very

rare. This composition indicates the Coniacian age. The pres-
ence of the index fossil Dicarinella concavata (Brotzen) was
not determined. It can be explained by the absence of the opti-
mal conditions for its origin (a deeper water environment).

In sample 10 the foraminiferal microfauna (Fig. 4, thin s.

22976) contains Hedbergella sp., Heterohelix sp., Globotrun-
cana arca

 (Cushman) (Pl. X: Fig. 1), Globotruncana cf. arca

Fig. 5. 

Distribution of radiolarian microfauna in the silicified limestone and marl.

  S a m p l e

5

6

8

 R a dio la ria n   m icro fa u n a

  A c a n th o c i r c u s   ty m p a n u m   O ´   D O G H E R T Y

x

x

  A c a n th o c i r c u s   v e n e tu s   ( S Q U IN A B O L )

x

x

  A l i e v i u m   c f .  s u p e r b u m   ( S Q U IN A B O L )  

x

 A r c h a e o c e n o s p h a e r a   ?   m e l l i fe r a   O ´  D O G H E R T Y

x

  C a v a s p o n g i a   a n te l o p e n s i s   P E S S A G N O

x

x

  C a v a s p o n g i a   s p .

x

  C r u c e l la   c a c h e n s i s   P E S S A G N O

x

x

  C r y p ta m p h o r e l l a   c o n a r a   ( F O R E M A N )

x

  D i a c a n th o c a p s a   o v o i d e a   D U M IT R I C Ã

x

  D i a c a n th o c a p s a   c f.   b r e v i t h o r a x   D U M I T R IC Ã

x

  D i a c a n th o c a p s a   s p .

x

  D i c t y o m i t r a   f o r m o s a   S Q U I N A B O L

x

x

  D i c t y o m i t r a   m o n t i s s e r e i   ( S Q U IN A B O L )

x

x

x

  D i c t y o m i t r a   u n d a ta   S Q U IN A B O L

x

x

x

 D i c t y o m i t r a  m u l ti c o s ta ta  Z IT T E L

x

  H o l o c r y p to c a n i u m   b a r b u i   D U M IT R I C Ã

x

  P a t e l l u l a   e c l i p t i c a   O ´   D O G H E R T Y

x

x

  P a t e l l u l a   c f.   h e r o i c a   O ´   D O G H E R T Y

x

 P a t e l l u l a  a n d r u s o v i  n .  s p .  

x

  P a t e l l u l a   s p .  A

x

  P a t e l l u l a   s p .  B

x

  P r a e c o n o c a r y o m m a   l i p m a n a e   P E S S A G N O

x

x

  P r a e c o n o c a r y o m m a   u n i v e r s a   P E S S A G N O

x

  P s e u d o a u l o p h a c u s   p u ta h e n s i s   P E S S A G N O

x

x

  P e s s a g n o b r a c h i a   fa b i a n i i   ( S Q U I N A B O L )

x

  P s e u d o d i c ty o m i tr a   p s e u d o m a c r o c e p h a l a   ( S Q U IN A B O L )

x

x

  S ti c h o m i t r a   c o m m u n i s   S Q U I N A B O L

x

x

x

  S ti c h o m i t r a   s t o c k i   ( C A M P B E L L   e t  C L A R K )

x

x

x

  U l tr a n a p o r a   c f.   d u m i tr i c a i   P E S S A G N O

x

  V i to r fu s   c a m p b e l l i   P E S S A G N O

x

Plate VIII:

 Foraminifers of Helvetoglobotruncana helvetica Zone,

middle Turonian (sensu Salaj 1996), early Turonian (except for the
lowermost part)–middle part of middle Turonian (sensu Robaszyn-
ski & Caron 1995). Fig. 1. Dicarinella oraviensis trigona (Scheib-
nerová), silicified form, thin s. 22801, 130

×

Figs. 2, 3. Dicarinel-

la oraviensis oraviensis

 (Scheibnerová), silicified form, thin s.

22801, 22804, 130

×

, 135

×

Fig. 4. Helvetoglobotruncana helveti-

ca

 (Bolli), thin s. 22804, 120

×

. Fig. 5. Transitional form between

Dicarinella imbricata

 (Mornod) and Dicarinella hagni (Scheib-

nerová), thin s. 22804, 130

×

Fig. 6. Dicarinella imbricata (Morn-

od). thin s. 22804. 130

×

Fig. 7. Dicarinella biconvexa (Samuel &

Salaj), thin s. 22797, 120

×

Fig. 8. Dicarinella biconvexa gigantea

(Samuel & Salaj), thin s. 22796, 45

×

.

background image

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN SUCCESSION OF THE PIENINY KLIPPEN BELT            257

background image

258                                                                        SÝKORA, OŽVOLDOVÁ and BOOROVÁ

Plate IX: 

Foraminifers of Helvetoglobotruncana helvetica Zone, middle Turonian (sensu Salaj 1996), early Turonian (except for the low-

ermost part)–middle part of middle Turonian (sensu Robaszynski & Caron 1995), line code 10 

µ

m. Figs. 1, 2. Dicarinella oraviensis ora-

viensis 

(Scheibnerová). Fig. 1 sample 5, Fig. 2 sample 8. Fig. 3.  Dicarinella oraviensis trigona (Scheibnerová), sample 8. Figs. 4, 5. Di-

carinella biconvexa gigantea 

(Samuel & Salaj), sample 5. Fig. 6. Dicarinella carpathica (Scheibnerová), sample 8. Fig. 7. Whiteinella

gigantea

 (Lehmann), sample 5. Fig. 8. Falsomarginotruncana renzi (Gandolfi), sample 5. Fig. 9. Transitional form between Dicarinella

imbricata

 (Mornod) and Dicarinella hagni (Scheibnerová), sample 8. Fig. 10. Heterohelix reussi (Cushman), sample 5. Fig. 11. Hetero-

helix globulosa

 (Ehrenberg), sample 4. Fig. 12. Schackoina bicornis (Reichel), sample 5.

background image

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN SUCCESSION OF THE PIENINY KLIPPEN BELT            259

Plate X: Fig. 1.

 Globotruncana arca (Cushman), Zone Globotruncana arca, Early Campanian, thin s. 22976, 165

×

Fig. 2. Globotruncana

cf.  arca (Cushman), Zone Globotruncana arca, Early Campanian, thin s. 22976, 170

×

Fig. 3. Falsomarginotruncana pseudolinneiana

(Pessagno), Coniacian, thin s. 22973, 120

×

Fig. 4. Transitional form between Falsomarginotruncana angusticarinata (Gandolfi) and

Falsomarginotruncana sinuosa

 (Porthault), Coniacian, thin s. 22973, 125

×

.

background image

260                                                                        SÝKORA, OŽVOLDOVÁ and BOOROVÁ

(Cushamn) (Pl. X: Fig. 2) and G. linneiana (D´Orbigny).
Benthic specimen do not occur there. The assemblage most
probably indicates the Globotruncana arca Zone — Lower
Campanian (according to Salaj 1996).

Conclusions

A review of recent results shows that there are several

stratigraphic horizons with silicified beds containing radi-
olarians in the Albian-Campanian sediments of the Czorsz-
tyn Succession of the Pieniny Klippen Belt, which were
identified in Polish as well as Slovak territory.

Our studied section (Fig. 3, samp. 1) in the Czorsztyn Suc-

cession of the Pieniny Klippen Belt begins with the upper
part of the Lysa Limestone Formation (Birkenmajer 1977)
(probably Upper Berriasian-Valanginian) and with the lime-
stones of the Chmielowa Formation (l.c.) (Fig. 3, samp. 2b,
probably 2a, 2c) (Upper Albian–Lower Cenomanian accord-
ing to foraminiferal microfauna). Between these formations
there is a hiatus/erosion and break of sedimentation. Rocks
of the Middle-Upper Cenomanian and lowermost Turonian
have not been found.

The section continues with Turonian beds (the upper part

of Lower Turonian–?middle part of Middle Turonian accord-
ing to the evaluation of foraminiferal and radiolarian micro-
fauna) in facies of brick-red marls and grey-green silicified
limestones and marls with reddish-brown, grey-green and
scarcely yellowish cherts (Fig. 3, samp. 3–8) (Skalski Marl
Member of Jaworki Formation) (l.c.). The upper part of these
sediments has irregular red spots, in the uppermost part it is
of grey-red colour only.

The transition to the overlying brick-red and red marls (Fig. 3,

samp. 9, 10) (Pustelnia Marl Member of Jaworki Formation)
(l.c.) is continuous. According to their foraminiferal microfauna
these marls are ?Late Turonian to Early Campanian in age.

In the Polish part of the Pieniny Klippen Belt the occurrence

of the silicified limestones and marls with foraminifers and ra-
diolarians in the above mentioned stratigraphic interval is not
known. At first the Lorencowe Chert Bed (Skalski Marl Mem-
ber of Jaworki Formation) (l.c.) was assigned (Birkenmajer
1977) to the Upper Cenomanian–?Lower Turonian, but in later
investigations they were assigned to the Pustelnia Marl Mem-
ber (Jaworki Formation) (l.c.) on the Santonian-Campanian
boundary (Jednorowska 1979; Birkenmajer & Jednorowska
1987; K. Bak 1994; M. Bak 1994; M. Bak 1996).

The silicified limestones and marls in the studied section

(Samp. 4–8) have the same lithological characteristics as the
Lorencowe Chert Bed (Birkenmajer 1977; M. Bak 1966 etc.),
but the age of their microfauna is different. It represents the
stratigraphic range — Lower Turonian (except for the lower-
most part)–?the middle part of Middle Turonian.

As regards the Altana Shale Bed (Skalski Marl Member of

Jaworki Formation) this sequence is represented by black-blue
and greenish-black (sometimes yellow-green) marly shales
with radiolarians (Birkenmajer 1977), black, blue-greenish
and olive-green marly shales (M. Bak 1996) of Late Cenoma-
nian age (l.c.). Its lithological characteristics and the strati-
graphical position differ from those of the sediments in the
studied section.

The above mentioned data leads to the conclusion, that the

stratigraphic position of the silicified horizons in the
Cenomanian-Campanian sediments of the Czorsztyn Succes-
sion of the Pieniny Klippen Belt requires further investiga-
tion in Slovak as well as Polish territory.

Paleontological part

Subclass Radiolaria Müller 1858

Order Polycystina Ehrenberg 1838, emend. Riedel 1967

Suborder Spumellariina Ehrenberg 1875

Family Pseudoaulophacidae Riedel 1967

Genus Patellula Kozlova, in Petrushevskaja & Kozlova 1972

Type species: Stylospongia planoconvexa Pessagno 1963

Patellula andrusovi 

Ožvoldová, n.sp.

(Pl. IV: Figs. 1–7, 9, 11)

Holotype: 

No. 4655, Pl. IV: Figs. 2, 5, deposited in the Slo-

vak National Museum in Bratislava (SNM-21514)
Type locality: 

Vršatecké Podhradie village — Biele Karpaty Mts.

Stratotype: 

lower Turonian (except for the lowermost part)

–?the middle part of middle Turonian of the Czorsztyn Suc-
cession of the Pieniny Klippen Belt (Western Carpathians)
Denomination: 

This species is named in honour of Prof.

Dimitrij Andrusov, the great Slovak geologist (1897–1976)
Description: 

Test large, circular to subcircular in outline,

asymmetrical with respect to the equatorial plane. Upper sur-
face with a strongly raised central area. Lower surface less ele-
vated because of crater-like cavity in the center. Very small
mostly broken spines can be observed in equatorial plane.
Meshwork composed mostly of hexagonal pore frames with
nodes at vertices.
Oval to circular depression at lower surface with protruding
rim of tetragonal to polygonal pore frames, which form an ir-
regular, sometimes double chain of large, oval pores.
Comparison: 

The very similar species Patellula verteroensis

(Pessagno) has a meshwork of equilateral triangles around the
central depression at the lower surface. The species Patellula pla-
noconvexa

 (Pessagno) lacks the depression at the lower surface

and has an extensively developed triangular meshwork there.

----------------------------------------------------------------------------------------
Dimensions: (mm)

holotype

min.

max.

mean

----------------------------------------------------------------------------------------
Diameter of cortical shell

0.333

0.285

0.352

0.330

Diameter of central area

0.125

0.114

0.151

0.130

Diameter of depression with
protruding rim

0.108

0.093

0.120

0.104

----------------------------------------------------------------------------------------

Acknowledgements

: The authors would like to express their

gratitude to M. Bak (Institute of Geological Sciences, Jagiel-
lonian University, Cracow). K. Bak (Institute of Geography,
Cracow Pedagogical University) and J. Salaj (Geological In-
stitute of the Slovak Academy of Sciences, Bratislava) for
critically reading the text and their comments and sugges-
tions. We also would like to thank J. Stankovič (SEM) and L.
Frantová (Department of Geology and Paleontology, Faculty
of Sciences of Comenius University, Bratislava). Without
their assistance the article could not be made.

background image

TURONIAN SILICIFIED SEDIMENTS IN THE CZORSZTYN SUCCESSION OF THE PIENINY KLIPPEN BELT            261

Pustelnia Marl Member, Pieniny Klippen Belt of Poland, Car-
pathians. Stud. Geol. Pol.,  LXI, 37–74.

Kokoszynska B. & Birkenmajer K., l956: Albian fauna of the

Niedzica Series from the Klippen Belt of Pieniny Mts. Acta
Geol. Pol.,

 6, 371–380 (in Polish).

Maamouri A.L., Salaj J., Mamouri I.M., Matmam T. &  Zargouni

F., 1994: Le Crétacé du Jebel Oust (Tunisie nord-orientale),
microbiostratigraphie-biozonation-apercu sedimentologique.
Zem. Plyn Nafta

, 39, 1, 73–105.

Mišík M., 1979: Sedimentological and microfacial study in the Ju-

rassic of the Vršatec (castle) Klippe, (neptunic dykes, Oxfor-
dian bioherm facies). Západ. Karpaty, Sér. Geol., 5, 7–56 (in
Slovak, English summary).

O´Dogherty L., 1994: Biochronology and paleontology of

mid-Cretaceous radiolarians from Northern Appenines (Italy)
and Betic Cordillera (Spain). Mém. Géol. (Lausanne), 21, 1–413.

Pessagno E.A., 1963: Upper Cretaceous Radiolaria from Puerto

Rico. Micropaleontology, 9, 2, 197–214.

Petrushevskaya M.G. & Kozlova G.E., 1972: Radiolaria: Leg 14.

Deep Sea Drilling Project. In: Hayes D.E., Pimm A.C. et al.
(Eds.): Initial reports of the Deep Sea Drilling Project. 14.495
648. U.S. Government Printing Office, 

 Washington D.C.

Robaszynski F. & Caron M., 1995: Foraminiféres planctoniques

du Crétacé: commentaire de la zonation Europe-Méditerra-
née. Bull. Soc. Géol. France, 166, 6, 681–692.

Salaj J., 1961: The new stratigraphical knowledges from Creta-

ceous sediments of the Inner Klippen Belt. Western Car-
pathians. Geol. Práce, Zpr., 22, 83–97 (in Slovak).

Salaj J., 1996: Tunisian Upper Cretaceous hypostratotypes as pos-

sible candidates of Tethyan stratotypes including stratotype
boundaries. Zem. Plyn Nafta, 40, 4,  245–307.

Samuel O., 1962: Microbiostratigrafic situation in Cretaceous sed-

iments of Klippes zone in vicinity of Beňatina. Geol. Práce.
Zpr.,

 22, 83–97.

Scheibnerová V., 1969: Middle and Upper Cretaceous microbios-

tratigraphy of the Klippen Belt (West Carpathians). Acta geol.
geogr. Univ. Comen., Geol

., 17, 5–98.

Thurow J., 1988: Cretaceous radiolarians of the North Atlantic

ocean: ODP Leg 103 (Sites 638, 640 and 641) and DSDP Legs
93 (site 603) and 47B (Site 398). In: Boillot G., Winterer E.L.
et al. (Eds.): Proceedings of the Ocean Drilling Program, Sci-
entific Results

, 103, 379–418.

References

Alexandrowicz S., 1966: Stratigraphy of the Middle and Upper Cre-

taceous in the Polish part of the Pieniny Klippen Belt. Zesz.
Nauk. Akad. Gór.- Hut. 157 (Kraków). Rozpr.

, 78, 1–142.

Alexandrowicz S., Birkenmajer K., Scheibner E. & Scheibnerová

V., 1968: Comparison of Cretaceous Stratigraphy in the Pien-
iny Klippen Belt /Carpathians/. II. Northern Ridge. Bull.
Acad. Pol. Sci., Sér. Sci. Géol. Géogr. (Kraków),

 16, 2, 85–90.

Andrusov D. & Samuel O., 1973: Cretaceous–Paleogene of the

West Carpathians Mts. Guide to Excursion E. X Congres of
Carpath.-Balkan Geol. Assoc. (Bratislava),

 1–78.

Bak K., 1994: Foraminiferal biostratigraphy of the Upper Creta-

ceous red deposits in the Pieniny Klippen Belt, Carpathians,
Poland. Abstract Book in the IGCP Project No. 362., Ann.
Meet. (Smolenice),

 75–76.

Bak M., 1994: Radiolaria horizons in the Middle and Upper Creta-

ceous deposits of the Pieniny Klippen Belt, Carpathians, Po-
land. Abstract Book in the IGCP Project No. 362, Ann. Meet.
(Smolenice),

 77–78.

Bak M., 1996: Late Cretaceous Radiolaria from the Czorsztyn

Succession, Pieniny Klippen Belt, Polish Carpathians. Stud.
Geol. Pol.,

 109, 69–85.

Began A., 1969: Geological situation of the Klippen Belt and the

Manín Unit in the middle part of the Váh Valley. Zbor. Geol.
Vied, Západ. Karpaty,

 11, 55–103 (in Slovak).

Birkenmajer K., 1968: Pieniny Klippen Belt of Poland. Gelogical

Guide (Warszawa), vol. II,

 1–72 (in Polish).

Birkenmajer K., 1963: Stratigraphy and Paleogeography of the

Czorsztyn series (Pieniny Klippen Belt, Carpathians) in Po-
land. Stud. Geol. Pol., IX, 1–380.

Birkenmajer K., 1977: Jurassic and Cretaceous lithostratigraphic

units of the Pieniny Klippen Belt, Carpathians, Poland. Stud.
Geol. Pol.,

  XLV, 1–159.

Birkenmajer K. & Gasiorowsky S.M., 1961: Stratigraphy of the

Titonian and Lower Neocomian of the Czorsztyn Series (Pi-
eniny Klippen Belt, Carpathians), based on Aptychi. Bull.
Acad. Pol. Sci., Sér. Sci. Géol. Géogr.,

 9, 2, 127–134.

Birkenmajer K. & Jednorowska A., 1987: Late Cretaceous fora-

miniferal biostratigraphy of the Pieniny Klippen Belt (Car-
pathians, Poland). Stud. Geol. Pol.,  XCII, 7–28.

Jednorowska A., 1979: Microfauna and age of Upper Cretaceous