background image

GEOLOGICA CARPATHICA,  48, 3, BRATISLAVA,  JUNE 1997

179–191

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP

OF NAPPES IN MORAVIA (CZECH REPUBLIC)

LILIAN ŠVÁBENICKÁ

1

, MIROSLAV BUBÍK

2

, OLDŘICH KREJČÍ

2

and ZDENĚK STRÁNÍK

2

1

Czech Geological Survey, Klárov 131/3, 118 21 Praha, Czech Republic

2

Czech Geological Survey, Leitnerova 22, 602 00 Brno, Czech Republic

(Received December 10, 1996; accepted in revised form March 18, 1997)

Abstract:

 In the Magura Group of nappes, Cretaceous sediments were proved in the Rača and Bílé Karpaty units

nearly in the whole range of the period. This was made possible by new biostratigraphic (foraminifers and calcareous
nannofossils) and biofacies data. In the present paper, the Kurovice Klippe, Gault Flysch, Kaumberg Formation and
the lower part of the Soláň Formation are included in the Rača Unit, while the Hluk, Kaumberg and Javorina forma-
tions and the lowermost part of the Svodnice Formation are placed in the Bílé Karpaty Unit. Some lithostratigraphic
units of Senonian age appear in tectonic slices only (Púchov Marl and Antonínek Formation) which makes their
incorporation into the paleogeographical model of the Magura Group of nappes difficult.

Key words:

 Western Carpathians, Outer Flysch Belt, Magura Group of nappes, Cretaceous, lithostratigraphy,

biostratigraphy.

Introduction

The Magura Group of nappes is the significant regional unit
of the Outer Western Carpathians (Fig. 1) in which sediments
from the Upper Jurassic up to the Miocene were proved.

Until the 1980s, the presence of the Cretaceous was not re-

spected at all in the Magura Group of nappes in the territory
of Moravia. The prevailing flysch deposits were considered
solely Paleogene (Matějka & Roth 1956; Pesl 1965, 1968).

In contrast, Cretaceous deposits were reported in the Pol-

ish part of the Magura Group of nappes by Sikora & Zytko
(1959), Geroch et al. (1967), Oszczypko (1992) and others.
Biely et al. (1996) marked the Cretaceous flysch sediments
in the Magura Group of nappes on the Geological Map of
Slovakia. Cretaceous sediments were also known in the
Rhenodanubian Flysch of Austria (Götzinger 1954; Prey
1980) and Western Bavaria (Hesse 1973) which is the contin-
uation of the Magura Group of nappes.

In the Moravian part of the Magura Group of nappes the

Cretaceous sediments were in the past described only in iso-
lated tectonic slices in the front of the Rača Unit (Fig. 2) in
the Kurovice area (Matějka in Buday et al. 1967; Benešová
et al. 1968) and in the front of the Bílé Karpaty Unit near the
villages of Hluk and Blatnice (Plička 1957; Stráník et al.
1995). Compared with the main mass of nappes they repre-
sent different litho- and biofacies developments within the
Cretaceous (Bubík 1995).

On the basis of new litho- and biostratigraphic study made

on foraminifers and calcareous nannofossils, Cretaceous sedi-
ments were found in the Rača and Bílé Karpaty units nearly
in the whole range. In the Bystrica Unit, sediments of the
Cretaceous age have not been observed in the territory of the
Czech Republic.

The Lower Cretaceous was newly described in the Rača

Unit in the Hostýnské vrchy Hills (Bubík et al. 1993), the

Upper Cretaceous in a number of places in the Rača Unit
(e.g. Pesl & Švábenická 1988) and in the Bílé Karpaty Unit
(Švábenická 1990, 1992; Švábenická & Bubík 1992; Vujta et
al. 1989; Potfaj 1993; Bubík 1995; Stráník et al. 1995).

Geological development of the Magura

depositional area

The depositional area of the flysch units of the Magura

Group of nappes was formed by the creation of basinal,
trough zones formed in the process of the Jurassic rifting of
the European-African platform.

In the Triassic the northern Tethyan margin was under con-

ditions of a slowly sinking shelf with a very limited fault ac-
tivity. During the Lias and Dogger numerous normal faults
were actived and elevation and depression zones originated.
This fault activity caused the opening of the Central Atlantic
Ocean, when a long-term extension trend between Eurasia
and Africa began and when the new paleogeographical do-
mains of the Eastern Alps and the Western Carpathians origi-
nated (Tricart 1984). These domains were locally divided
into a number of subdomains belonging to individual nappe
systems known till now.

In accordance with Tricart (1984) the Flysch Belt of the

Western Carpathians can be classified into  particular do-
mains. The Outer Group of nappes (Menilite-Krosno Group)
can be put to the Helvetic domain. The Magura depositional
area probably belonged  to the North Penninic (the Valais)
domain. Soták (1992) joined the Magura depositional area to
the Pieniny-Magura basin on the basis of the Mesozoic peb-
ble material that was found in the Soláň Formation of the
Rača Unit (Hostýn and Tři kameny lithofacies zones) in the
Chřiby Highland and Hostýnské vrchy Mts. Further in the in-
ternal part of the Bílé Karpaty Unit there are obviously some

background image

180                                                                                       ŠVABENICKÁ et al.

common features with flysch of the Pieniny Klippen Belt and
its detached zone in the Paleogene. Above all, it is an abun-
dance of the carbonate detritus derived from the nappes of
the Pieniny Klippen Belt and the occurrence of the
“couches-rouges” sediments — Púchov Marl of  the Campa-
nian and Maastrichtian age in the Hluk area.

The western part of the Magura Group of nappes is divid-

ed into the Rača, Bystrica and Bílé Karpaty units (Fig. 2).
The facies developments of the first two mentioned units
are very similar. The sediments of the Bílé Karpaty Unit are
quite different, especially in the Paleogene.

The neo-Alpine movements in the Eocene and Oligocene

gradually ended the sedimentation in the Magura depositional
area. Nevertheless, Cieszkowski (1992) suggested continuous
sedimentation up to the Middle Miocene in the Podhale region
(South Poland). The final nappe structure and the present posi-
tion of the nappes in the Flysch Carpathian Belt resulted from
the Styrian orogeny during the Lower and Middle Miocene.

The primary depositional area of the Outer Group of

nappes is supposed partially in the territory of the present
Central Carpathians and it touched the southern rim of the
North European Platform. Reconstructing the movements of
the Magura Group of nappes it is necessary to take into con-
sideration not only the thrust tectonics, but also the
far-reaching horizontal SW–NE displacements (Ratschba-
cher 1991a,b).

Methods

Biofacies study was based on foraminiferal thanatocoenoses

obtained solely from hemipelagites. Five biofacies (sensu
Bubík 1996) were determined in the Cretaceous sediments of
the Magura Group of nappes:

1. Glomospira–Rhizammina biofacies (diagnostic features:

purely agglutinated assemblage of low diversity with abun-
dant “Rhizammina” sp. and representatives of the superfami-
ly Ammodiscacea; environment: low-oxygen conditions be-
low the CCD).

2. Marssonella biofacies (diagnostic features: mixed

calcareous-agglutinated benthic assemblages with calcareous
agglutinated taxa such as Marssonella, Clavulinoides, Doro-
thia 

etc., more or less planktonic foraminifers; environment:

above the CCD, usually the continental slope sediments).

3. Rhabdammina–Rzehakina biofacies (diagnostic fea-

tures: purely agglutinated assemblages consisting of abun-
dant tubular astrorhizids like Nothia, Bathysiphon, Rhab-
dammina 

and various hormosinids, rzehakinides, lituolids,

verneuilinids etc.; environment: usually deep-sea turbidite
fans below the CCD).

4. Recurvoides–Paratrochamminoides biofacies (diagnos-

tic features: purely agglutinated high-diversity assemblages
with various Paratrochamminoides and Recurvoides repre-
sentatives, hormosinids, verneuilinids and free of rzeha-
kinids and tubular astrorhizids except “Rhizammina” sp.; en-
vironment: abyssal zone with significant detrital input,
below the CCD).

5. Buzasina–Praecystammina biofacies (diagnostic fea-

tures: purely agglutinated assemblages with abundant small
smooth-walled  Buzasina, Haplophragmoides and Praecys-
tammina 

species; environment: abyssal zone with low detri-

tal input, below the CCD).

The zonation sensu Geroch & Nowak (1984) and the later

results by Neagu (1990) and Bubík (1995) was used for the
biostratigraphic evaluation of agglutinated foraminifers.

Upper Cretaceous planktonic foraminifers were evaluated

using the zones of Robaszynski et al. (1984) and the strati-
graphic data of Caron (1985). Lower Cretaceous planktonic

Fig. 1.

 Tectonic map of the West-Carpathian area with the spread of the flysch units.  1 — Bohemian Massif with the pre-Tertiary cover

sediments; 2 — Neogene sediments of the Carpathian Foredeep; 3 — Outer Group of nappes; 4 — Magura Group of nappes; 5 — Pie-
niny Klippen Belt; 6 — Central Carpathians; 7 — frontal flysch nappes overthrust; 8 — partial thrust faults.  A — Austria, UA —
Ukraine.

background image

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP OF NAPPES IN MORAVIA                  181

foraminifers were preliminarily determined and evaluated
according to Banner & Desai (1988).

For the nannofossil study the samples were collected from

turbidity calcareous claystones (interval T

sensu Bouma

1962). Biostratigraphic data were correlated mainly with the
standard CC zones by Sissingh (1977) and Perch-Nielsen
(1985). The Campanian sediments where only cosmopolitan
and high-latitude nannofossils have been found  were com-
pared with the Boreal zonation suggested by Burnett (1990).
In the Lower Paleocene, the standard NP zones by Martini
(1971) were used. Data concerning province appurtenance of
some nannofossil species were interpreted mainly according to
Mutterlose (1992) and Wind (1979).

Results

Rača Unit

The Rača Unit is characterized by the prevailing sedimen-

tation of  black lithic flysch in the Lower Cretaceous and by

variegated distal turbidity and hemipelagic sedimentation in
the Senonian. In contrast  the so-called Kurovice Klippe rep-
resents mainly carbonate sediments of the Late Jurassic to
the Early Cretaceous age and sedimentary breccias of the Se-
nonian age.

Flysch sediments of the Rača Unit were classified by

Pesl & Krystek (1966) on the basis of their lithofacies de-
velopment into several belt zones. The Cretaceous is
present in the external Hostýn and Tři kameny lithofacies
zones (Fig. 2). The lithostratigraphy of these zones was de-
scribed by Pesl (1968).

Kurovice Klippe

Kurovice Limestone
The Kurovice Limestone was described by Glöcker (1841)

and according to its  aptychi assigned to the Jurassic. They
are mostly grey micritic, medium- to thick-bedded lime-
stones. The petrographic description was done by Eliáš in
Benešová et al. (1968) and by Eliáš et al. (1996). The thick-
ness of the limestones reaches up to 160 m.

Fig. 2.

  Tectonic map of the western part of the Magura Group of nappes with localities where the Cretaceous sediments were found: 1 —

Kurovice Klippe; 2 — Tesák; 3 — Rajnochovice; 4 — Mikuluvka; 5 — Valašská Bystřice; 6 — Valašské Meziříčí; 7 — Uzgruň; 8 —
Salajka; 9 — Lísky; 10 — Hluk; 11 — Sv. Antonínek and Blatnice M-1 borehole; 12 — Kobylí hlava; 13 — Sudoměřice; 14 — Mandát;
15

 — Javorina; 16 — Janegov mlyn; 17 — Velký Lopeník; 18 — Vyškovec; 19 — Štítná; 20 — Svinárský potok; 21 — Snoh; 22 — Fili-

povské údolí; 23 — Blatnice PVN-10 borehole. a — Rača Unit; b — Bystrica Unit; c — Vlára development of the Bílé Karpaty Unit;
d

 —  Hluk development of the Bílé Karpaty Unit; e — main Magura Nappe overthrust; f — partial thrust fault; g — southern borders of

the Hostýn lithofacies zone and Tři kameny lithofacies zone; h — localities.

background image

182                                                                                       ŠVABENICKÁ et al.

The age of the Kurovice Limestone was stated within the

range ?Oxfordian–Kimmeridgian–Tithonian. Their upper limit
was moved to the Early Berriasian by Vašíček & Reháková
(1994), on the basis of aptychi and calpionellids.

In the Tithonian part of the Kurovice Limestone (Kurovice

quarry, No. 1) nannofossils were found  of species known
from the Jurassic/Cretaceous boundary interval (Fig. 3), such
as  Nannoconus globulus and Zeugrhabdotus erectus. The
dominant presence of genera Cyclagelosphaera and
Watznaueria 

together with rare Conusphaera mexicana are

typical features of the Tethyan bioprovince.
    The foraminiferal fauna is badly preserved and poor, rep-
resented mostly by the specimens of genus Lenticulina (Be-
nešová et al. 1968).

Tlumačov Marl
The term Tlumačov Marl was introduced by Eliáš &

Eliášová (in Andrusov & Samuel 1985) for sediments over-
lying the Kurovice Limestone. According to Vašíček & Re-

háková (1994) the intercalated beds of limestones in the low-
ermost exposed part of the Tlumačov Marl indicate its gradu-
al transition from the Kurovice Limestone.

The Tlumačov Marl represents thin- to locally medium-

bedded flysch with light grey marlstones to clay limestones
(biomicrites). The thickness is assessed as up to 60 m (Eliáš
& Eliášová l.c.). The carbonate turbidites may be correlated
with the similar and stratigraphically equivalent sediments of
the Silesian Unit (Těšín Limestone).

The age of the Tlumačov Marl was proved to be Berria-

sian–Valanginian by Vašíček & Reháková (1994), on the ba-
sis of aptychi and calpionellids.

Washed residues of the Tlumačov Marl are usually dominated

by calcite casts of radiolarians. Foraminifers from the Tlumačov
V-13 borehole (see Benešová et al. 1968) are represented by
species  Caudammina crassa (=Rothina silesica), Pseudo-
reophax cisovnicensis 

and Protomarssonella(?) hauteriviana,

and they prove the Early Cretaceous age up to the Barremian.

The NK-2 Zone (sensu Bralower et al. 1989), hence the

Early Berriasian age is documented by nannofossils Retacap-
sa angustiforata 

and Rhagodiscus nebulosus in the Kurovice

quarry (No. 7, see Fig. 3). Nannofossils of the Valanginian
age represented by rare Micrantholithus speetonensis (CC3b
Zone) were found only in the clasts taken from the sedimen-
tary breccia of the Kurovice quarry (No. 6A), which litho-
logically corresponds  to the Tlumačov Marl.

The flysch carbonate sedimentation, the absence of macro-

fauna with the exception of aptychi as well as the presence of
the Marssonella biofacies indicate  sedimentation in the outer
turbidity fan at  bathyal depths.

A rich microfauna with foraminiferal plankton, such as Gor-

bachikella kugleri, G. anteroapertura 

and Praehedbergella

handousi 

(determined by BouDagher-Fadel, pers. comm.) was

found in an isolated block of dark-grey claystone taken from a
debris slope in the Kurovice quarry (No. 3H) and gave evi-
dence for the Late Hauterivian age. According to the character
of microfauna these sediments can be considered a part of the
succession of the Kurovice Klippe, while their lithostrati-
graphic position remains uncertain.

Formation of sedimentary breccias

Up to the present time the sedimentary breccias in the

Kurovice Klippe were regarded as the Paleocene Soláň For-
mation of the Rača Unit transgressing over the Jurassic–Cre-
taceous carbonates (Benešová et al. 1968). The Formation of
sedimentary breccias mostly consists of thick-bedded lime-
stone breccias, in places with beds of variegated clays (for
lithological description see Benešová et al. 1968 and Eliáš et
al. 1996). The clastic material was derived mostly from the

Fig. 3.

 Stratigraphic correlation chart of the Lower Cretaceous sedi-

ments of the Magura Group of nappes. The height of the columns
shows the possible stratigraphic ranges of samples ascertained using
the given microfossil group: 1 —  agglutinated foraminifers; 2 —
planktonic foraminifers; 3 — calcareous nannofossils; 4 — di-
nocysts; 5 — radiolarians. 

*

1 — deep-water agglutinated foramin-

iferal zones sensu Geroch & Nowak (1984): D. haut. — Dorothia
aff. hauterivianaG. obl. — Gaudryina oblongaH. n. — Haplo-
phragmoides nonioninoides

P. alternans — Plectorecurvoides al-

ternans

*

2 — calcareous nannofossil zones sensu Sissingh (1977)

and Perch-Nielsen (1985).

Fig. 4.

 Stratigraphic correlation chart of the Upper Cretaceous

sediments of the Magura Group of nappes. 1 —  deep-water agglu-
tinated foraminiferal zones sensu Geroch & Nowak (1984): A.
problematicus

 — Ammobaculites problematicusR. f. — Rzehak-

ina fissistomata

. 2 — planktonic foraminiferal zones sensu

Robaszynski et al. (1984): G. gans. — Gansserina gansseriA.
m.

 — Abathomphalus mayaroensis. 3 —  calcareous nannofossil

zones sensu Sissingh (1977) and Perch-Nielsen (1985). For other
explanation see Fig. 3.

background image

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP OF NAPPES IN MORAVIA                  183

background image

184                                                                                       ŠVABENICKÁ et al.

Kurovice Limestone and Tlumačov Marl. The sedimentary
breccias were deposited by repeated gravity flows.

The index species Caudammina gigantea and rare calcareous

foraminifers, such as Globotruncana arca, G. cf. falsostuarti
and Reussela szajnochae were found in the claystone interca-
lations (Kurovice quarry, No. 4C) and proved the Late Senon-
ian age (Fig. 4). The autochthonous foraminifers of the Rhab-
dammina–Rzehakina biofacies from claystone intercalations
evidence the high detrital input conditions below the CCD.

In the Kurovice quarry the following nannofossils were re-

covered in the clay matrix of sedimentary breccias (section
Nos. 2 and 3), evidencing the Late Coniacian (CC14 Zone
with Micula decussata and  frequent  Marthasterites furca-
tus

), Early Campanian (CC18 Zone with Aspidolithus parcus

constrictus 

and Arkhangelskiella specillata) and Late Campa-

nian with A. cymbiformis and Eiffellithus eximius.

Hostýn lithofacies zone

Kaumberg Formation
The Kaumberg Formation in the Hostýn zone has a similar

lithofacies development as in the Tři kameny zone. Until
now, only the foraminiferal Uvigerinammina jankoi Zone
evidencing the Late Turonian to Early Campanian age has
been identified there.

Soláň Formation
The Soláň Formation (Matějka & Roth 1948) of the

Hostýn lithofacies zone is formed by medium- to
thick-bedded flysch, ranging in age from the Maastrichtian to
the Paleocene (Stráník et al., in print). Its Cretaceous sedi-
ments are represented by blue-grey, fine- to coarse-grained
sandstones prevailing over grey claystones. At locality
Valašské Meziříčí No. 12A/94 sediments yielded nannofos-
sils of the Late Campanian age, such as Arkhangelskiella
cymbiformis

Neocrepidolithus watkinsiiReinhardtites an-

thophorus 

and R. levis and agglutinated foraminifers of the

Hormosina gigantea Zone (Fig. 4).

Tři kameny lithofacies zone

Gault Flysch
Under the term Gault Flysch authors comprehend

black-grey mostly non-calcareous thin- to medium-bedded
flysch and compare it to the Gault Flysch known from the
Rhenodanubicum of the Eastern Alps. The Gault Flysch rep-
resents the oldest known sediments of the probably continu-
ous stratigraphic succession in the Rača Unit. Thickness of
the strongly tectonized sediments is difficult to estimate.  It
was mentioned by Bubík et al. (1993) as a distinct lithostrati-
graphic unit.

The stratigraphic range Hauterivian–Cenomanian is based

on agglutinated foraminifers (Figs. 3 and 4). Only the young-
est sediments contain calcareous nannoplankton. Assemblages
with  Eiffellithus turriseiffelii and rare Lithraphidites acutus
were found at locality Tesák (Bubík et al. 1993). Nannofossil
associations with Corollithion kennedyi and Microstaurus
chiastius 

were found in the Mikuluvka section No. 1/6. The

above mentioned species are evidence of the CC9 Zone, i.e.
the Early Cenomanian.

Dinocysts (H. Leereveld, pers. comm.) prove the Late Ap-

tian to Middle Albian range in the Salajka section No. 9
where species Gardodinium trabeculosum, Ovoidinium sca-
brosum 

and Protoellipsodinium spinicristatum were found,

and the Late Albian to Cenomanian range in the Mikuluvka
section No. 1/8, documented by Lithosphaeridium siphoni-
ferum 

and Epelidosphaeridia.

Foraminiferal assemblages of the Rhabdammina–Rzeha-

kina and Glomospira–Rhizammina biofacies indicate sedi-
mentation in low-oxygen conditions below the CCD.

Kaumberg Formation
The Kaumberg Formation occurs in the Hostýn and Tři ka-

meny lithofacies zones. Farther to the SE it was identified
only in  deep boreholes (Mišík & Jablonský 1991), such as
Jarošov-1 (Špička in Hanzlíková 1976) or Jablunka-1 (Pesl
et al. 1982). It is characterized mainly by red-brown
non-calcareous claystones prevailing over siltstones and
fine-grained sandstones.  Pelocarbonates, manganese nod-
ules and layers with a manganese content up to 15 % are
rarely  found (Liebus 1925). Hanzlíková (in Menčík & Pesl
1966) mentioned  rare assemblages of agglutinated foramin-
ifers and radiolarians of the Early and middle Cretaceous age
from the “Salajka slice” and compared them with microfauna
from the Lhota and Godula formations of the Silesian Unit.

The thickness probably does not exceed 300 m and the

stratigraphic range has been newly verified from the Turonian
up to the Campanian–Maastrichtian.

Green-grey and dark grey intercalations within red-brown

claystones with radiolarians and agglutinated foraminifers of
Glomospira–Rhizammina biofacies found near Valašská
Bystřice (Mikuluvka section No.1/4) can be correlated with
the Cenomanian/Turonian boundary (Fig. 4). This is supported
also by the presence of the Bulbobaculites problematicus Zone
(upper part of the Cenomanian–lower part of the Turonian).
The agglutinated assemblage with Uvigerinammina praejan-
koi 

and U. jankoi found in variegated claystones at Rajnochov-

ice locality No. 14/94 indicates the Turonian age. The Uvigeri-
nammina jankoi Zone (upper part of the Turonian–lower part
of the Campanian) was identified in red-brown claystones
from Salajka (Nos. 6B, 7B, 15B). The co-occurrence of the
Glomospirella grzybowskii 

and Uvigerinammina jankoi from

another outcrop in Salajka (No. 16) allowed a more precise
age determination within the lower part of the Campanian.

The upper part of the Kaumberg Formation is formed by

medium- to thin-bedded flysch with sporadic layers of
red-brown calcareous claystones to marlstones.  Nannofos-
sils with Ceratolithoides arcuatus (CC21b Zone) accompa-
nied by high-latitude species Prediscosphaera stoveri were
found at the locality Salajka No. 13. They are evidence of
the lower part of the Late Campanian. Foraminiferal assem-
blages belong to the Hormosina gigantea Zone which is cor-
related with the Late Campanian–Maastrichtian interval.

Foraminiferal assemblages of the Rhabdammina–Rzeha-

kina biofacies from the Kaumberg Formation of the Rača
Unit indicate high detrital input conditions below the CCD.

background image

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP OF NAPPES IN MORAVIA                  185

Soláň Formation
The Soláň Formation in the Tři kameny lithofacies zone

comprises the Ráztoka and Lukov members (Pesl, unpub-
lished reports). The Cretaceous age was proved in the Rázto-
ka Member.

The Ráztoka Member (Shaly-sandstone member sensu

Pesl 1968) is characterized by the flysch with a changeable
content of sandstones and claystones of mostly grey and
green colours. Their thickness reaches  about 500 m.

At the locality Uzgruň (Pesl & Švábenická 1988), rare cal-

careous claystones yielded foraminiferal plankton with
Abathomphalus mayaroensis 

and nannofossils, such as Micula

murus 

(CC25c Zone), Nephrolithus frequens and Micula

prinsii 

(CC26), all of which give evidence of the Late Maas-

trichtian age. In addition, the stratigraphically “youngest”
nannofossil assemblages contain the so called “survivor spe-
cies” (sensu Pospichal & Bralower 1992) typical for the Cre-
taceous/Tertiary boundary sediments (e.g. Markalius apertus
and Neocrepidolithus fossus). The overlying non-calcareous
sequence (Uzgruň No. 23) provided agglutinated foramini-
fers Rzehakina fissistomata and “Trochammina” sp. 4 sensu
Bubík (1995) indicating the Paleocene age (Fig. 4).

Bílé Karpaty Unit

The Bílé Karpaty Unit is divided into the Hluk and Vlára

facies developments (Matějka & Roth 1956; Potfaj 1993;
Stráník et al. 1995). Both of them represent partial tectonic
units. Tectonic slices of the Upper Cretaceous sediments oc-
curring in the front of the Hluk development have a separate
position and their relations with the flysch trough of the Bílé
Karpaty Unit still remain uncertain.

Slices of uncertain tectonic position

Púchov Marl
The Púchov Marl is known from  sporadic outcrops in the

Hluk area (Stráník et al. 1995). They are characterized by
red, highly calcareous claystones and marls. Their thickness
has been estimated at more than 100 m. The underlying and
overlying beds of the Púchov Marl have not been reliably
identified. Lithologically and stratigraphically they corre-
spond to the Púchov Marl of the Pieniny Klippen Belt. They
may represent a continuation of the lithologically and strati-
graphically identical sediments of the “Hauptklippenzone” of
the Wienerwald in Austria (Bubík 1995). According to the
biofacies study, Púchov Marl was deposited in bathyal zone
mostly between the lysocline and CCD. Planktonic foramini-
fers and nannofossils give evidence for the Late Campanian
and Maastrichtian age (Stráník et al. 1995). Nannofossil as-
semblages include low- and mid-latitude species (Šváben-
ická 1996).

Antonínek Formation
The Antonínek Formation (Vujta et al. 1989) was de-

scribed in the quarry at the Sv. Antonínek Hill. It is also

known from the tectonic slices in the front of the Bílé Kar-
paty Unit, such as Sudoměřice and Kobylí hlava Hill locali-
ties, and boreholes Blatnice M-1 and PVN-10. Antonínek
Formation is formed by medium- to thick-bedded flysch with
grey claystones and siltstones prevailing over greywacke
sandstones and sporadic limestones (Stráník et al. 1995).

The age of the Antonínek Formation was proved to be

Campanian–Maastrichtian (Stráník et al. 1995), the underly-
ing and overlying beds were not reliably identified. The
thickness has been estimated at more than 100 m.

The autochthonous foraminifers obtained from hemipelag-

ites belong to the Rhabdammina–Rzehakina biofacies. To-
gether with the sporadic foraminiferal plankton and calcare-
ous benthos they are evidence of sedimentation below (close
to) the oscillating CCD (Stráník et al. 1995).

Hluk development of the Bílé Karpaty Unit

Hluk Formation
The Hluk Formation (Paul 1890) is exposed near Hluk,

where it was also found in numerous boreholes. It is character-
ized by carbonate flysch with black and grey-green claystones,
whitish marls and limestones. The thickness of the formation
verified by boreholes exceeds 120 m (Stráník et al. 1995).

The Hluk Formation was stratigraphically correlated with

the Lower Cretaceous Veřovice Member and Lhoty Forma-
tion of the Silesian Unit of the Moravskoslezské Beskydy
Mts. (Buday et al. 1963) and with the Wolfpassing and Bart-
berg formations of the “Nordzone” of the Wienerwald area in
Austria (Grün et al. 1972). Lithological and stratigraphic
equivalents of the Hluk Formation occur in the “Hauptklip-
penzone” (Main Klippen Zone) where Kahlenberg and Laab
nappes of the Rhenodanubian Flysch contact each other
(Stráník et al. 1995).

Sediments contain rich foraminifers, nannofossils, radiolari-

ans and dinocysts. Two stratigraphically different assemblages
of benthonic foraminifers were recognized within the Hluk
Formation: 1. the older one with Pseudoreophax cisovnicensis
and  Protomarssonella?  cf.  hauteriviana  indicating the Hau-
terivian–Barremian interval, 2. the younger one represented by
Plectorecurvoides alternans 

may be correlated with the upper

part of the Albian to the ?Cenomanian.

Turbidity marls with the older benthonic assemblage (Hluk

locality, V3 and V4 boreholes) provided planktonic foraminifers
with Blefuscuina convexaBexcelsa cumulus and B. infracreta-
cea occidentalis 

(BouDagher-Fadel, pers. comm.),  evidence of

the Aptian age. The Aptian age is proved also by radiolarians
from the Hluk locality No. 16/19 (Ožvoldová, pers. comm.),
documented by species Crucella gavalai O’Dogherti and C. his-
pana 

O’Dogherti. On the other hand, nannofossils of the CC5

Zone with Lithraphidites bollii and abundant nannoconids indi-
cate the Late Hauterivian–Early Barremian interval and give ev-
idence for the Tethyan bioprovince.

The non-calcareous hemipelagic clays and their autochtho-

nous foraminifers of the Glomospira–Rhizammina and Rhab-
dammina–Rzehakina biofacies provide evidence of the envi-
ronment below the CCD.

background image

186                                                                                       ŠVABENICKÁ et al.

Kaumberg Formation
The Kaumberg Formation is formed mainly by red-brown

non-calcareous claystones sporadically enclosing intercalat-
ed beds of greywacke sandstones. The thickness is tectoni-
cally reduced, estimated at about 100 m. As observed, the
upper and lower boundaries of this formation are tectonic in
character. The Svodnice Formation may be developed in the
superjacent of the Kaumberg Formation in the internal part
of the Hluk development of the Bílé Karpaty Unit (Stráník et
al. 1995).

The autochthonous assemblages of agglutinated foramini-

fers prove the Cenomanian–Late Senonian range document-
ed by the Plectorecurvoides alternans (Blatnička R1/10),
Ammobaculites problematicus (Mandát Nos. 46 and 56),
Uvigerinammina jankoi (Mandát Nos. 20A and 62), and Hor-
mosina gigantea (Mandát Nos. 20, 57 and 65) zones — see
Fig. 4. The horizon with green-grey and black-grey intercala-
tions in red claystones giving evidence of the Cenomanian/
Turonian boundary (Mandát section No. 56) can be correlat-
ed with a similar horizon in the Rača Unit. The presence of
the Recurvoides–Paratrochamminoides and Buzasina–Prae-
cystammina biofacies indicates the abyssal zone. The Late
Senonian assemblages belong to the Rhabdammina–Rzehak-
ina biofacies characteristic of high detrital input conditions
below the CCD.

Svodnice Formation
The Svodnice Formation (Pesl 1968) is formed by medi-

um- to thick-bedded flysch with grey coloured calcareous
claystones prevailing over fine- to medium-grained
greywacke sandstones.

The underlying beds are probably formed by the Kaumberg

Formation, with the overlying Nivnice Formation it was ob-
served interfingering within the Upper Paleocene. Its maxi-
mum thickness is estimated at 1000 m (Stráník et al. 1995).

The oldest known sediments contain the Late Senonian

planktonic foraminifers. Nannofossils with Lithraphidites
quadratus 

(CC25c) and Nephrolithus frequens (CC26 Zone)

enable a more precise classification into the Late Maastrich-
tian in the Filipovské údolí section. The overlying beds
yielded nannofossils of the lowermost part of the Paleocene,
such as Cruciplacolithus primus (NP1 biochron — No. 16)
and Cruciplacolithus tenuis (NP2 Zone — No. 32).

The non-calcareous hemipelagic clays contain agglutinat-

ed foraminifers of the Rhabdammina–Rzehakina biofacies
indicating the high detrital input conditions below the CCD.

Vlára development of the Bílé Karpaty Unit

Kaumberg Formation
From the Kaumberg Formation of the Hluk development it

only differs in its upper part where thin-bedded flysch with
mostly non-calcareous claystones are developed. This litho-
facies was described by Potfaj (1993) as the Ondrášovec
Member. The total thickness reaches  about 400 m. Its under-
lying beds are unknown, its top is represented by a gradual
transition into the Javorina Formation (e.g. the Janegov mlyn
and Velký Lopeník localities in the Slovak part of the Bílé

Karpaty Mts. — Fig. 2). The stratigraphic range is known
from the Cenomanian to the Early Maastrichtian (Fig. 4).

Agglutinated foraminifers and the biofacies are similar to

the Hluk development with the exception of the absence of
the Buzasina–Praecystamina biofacies.

In the upper flysch part calcareous nannofossils were re-

corded, ranging in age from the uppermost part of the Lower
Campanian up to the base of the Maastrichtian. This strati-
graphic interval is documented by species Ceratolithoides
aculeus 

(CC20 Zone) which was found at locality Janegov

mlyn, and by the first occurrences of Quadrum sissinghii and
Petrarhabdus copulatus 

(CC21 Zone), Quadrum trifidum

(CC22a Zone), Reinhardtites levis (CC22b Zone) and Pre-
discosphaera grandis 

(CC23 biochrone) at locality Velký

Lopeník.

Javorina Formation
The fine- to medium-bedded flysch contains fine- to

medium-grained greywacke sandstones, mostly non-calca-
reous claystones and sporadically intercalations of turbidity
limestones (Stráník et al. 1989). The thickness is estimated at
750 m, the age is known in the Campanian to the Lower Pa-
leocene interval.

Nannofossils give evidence for the lower part of the Late

Campanian up to the Lower Paleocene. The Late Campanian
supported by species Petrarhabdus copulatus and Quadrum
sissinghii 

(CC21 Zone) was found in Javorina section

(Fig. 4). The Lower Paleocene (NP2 biochrone) is docu-
mented by nannofossils Cruciplacolithus asymmetricus,
C. intermedius 

and 

C. primus 

at Štítná locality No. 42B.

Assemblages of the Rhabdammina–Rzehakina biofacies

indicate the high detrital input conditions below the CCD.

Svodnice Formation
The Vlára development of the Svodnice Formation is

formed, like its Hluk development, by medium- to thick bed-
ded flysch with grey calcareous claystones prevailing over
greywacke sandstones.

The lithological transitions from the Javorina Formation

into the Svodnice Formation were observed in the vicinity of
Štítná (Fig. 2). The oldest known sediments of the Svodnice
Formation were found in section No. 29. They contained the
Late Maastrichtian nannofossils of the CC26 Zone, such as
Lithraphidites quadratus, Micula murus 

and Nephrolithus

frequens 

(Fig. 4). In section No. 35  Micula prinsii was re-

covered, giving evidence of the upper part of the CC26
Zone, i.e. the uppermost part of the Late Maastrichtian.
Moreover, “survivor nannofossil species” typical for the Cre-
taceous/Tertiary boundary were also found in these samples,
among others Markalius apertus.

The biofacies is the same as that in the Hluk development

of the Svodnice Formation.

Discussion

In the authors’ opinion, the Kurovice Klippe can be con-

sidered a part of the Rača Unit tectonically as well as paleo-
geographically. The sedimentary breccia represents the proxi-

background image

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP OF NAPPES IN MORAVIA                  187

mal facies unlike the mature turbidites of the same age from
the uppermost part of the Kaumberg Formation.

In the Kurovice Klippe, sediments of the Barremian–Low-

er Coniacian interval have not been identified yet. Although
Benešová et al. (1962) described the Albian in the Kurovice
quarry on the basis of the presence of Rothina silesica
(=Caudammina crassa) 

and Globigerinella (=Globigerinel-

loides) ultramicra

, according to the present knowledge, these

taxa are of no stratigraphic value in the Cretaceous. The ab-
sence of the Barremian–Lower Coniacian sediments can be
explained by submarine erosion.

The Púchov Marl is traditionally attributed to the Hluk de-

velopment of the Bílé Karpaty Unit (Potfaj 1993; Stráník et
al. 1995). Its foraminiferal fauna of the Marssonella biofa-
cies and the absence of plankton are  evidence of sedimenta-
tion in the bathyal zone mostly between the lysocline and the
CCD. The stratigraphically equivalent foraminifers of the
Kaumberg Formation indicate the bathyal to abyssal zones
below the CCD. Considering this contrast, Bubík (1995) de-
tached the Púchov Marl from the Hluk area and compared it to
the variegated marls of the “Hauptklippenzone” of the Wiener-
wald in Austria. The occurrence of the Púchov Marl in the
above mentioned areas suggests close relations to the Pieniny
Klippen Belt. This speculation is supported by nannofossil as-
semblages formed only by cosmopolite and Tethyan species
not found anywhere else in the Upper Cretaceous sediments of
the Magura Group of nappes (Švábenická 1996).

The paleogeographical classification of the Antonínek For-

mation remains questionable. It is considered a part of the
Hluk development of the Bílé Karpaty Unit by Stráník et al.
(1995) while Bubík (1995) regards it as  a separate succes-
sion on the basis of biofacies study. An abrupt lateral substi-
tution by the stratigraphically equivalent red-brown clay-
stones of the Kaumberg Formation is improbable.

 The mutual relations of the formations in the Hluk devel-

opment of the Bílé Karpaty Unit are rather problematic, as
their boundaries have not been identified yet. No indications
of the transition between the Kaumberg and the Svodnice
formations (like variegated intercalated beds) have been ob-
served yet. The lithostratigraphic boundary of the Hluk and
Kaumberg formations has not been observed either. In con-
trast, in the Vlára development  a slow lithological transition
of the flyschoid upper part of the Kaumberg Formation into
the Javorina Formation  was found and there were also tran-
sitions from the Javorina Formation into the Svodnice For-
mation.

According to the present knowledge, the biofacies distri-

bution in the Hluk development of the Bílé Karpaty unit is
evidence of  a paleobathymetric trend from the lower bathy-
al in the Barremian–Albian interval to the abyssal in the
Cenomanian–Campanian (?Maastrichtian) back to the low-
er bathyal since the Maastrichtian (Bubík 1995). The
spreading of abyssal biofacies as well as the presence of ex-
tremely distal lithofacies reflect deepening of the deposi-
tional area in the Cenomanian to the Campanian. The disap-
pearance of the abyssal biofacies could have been induced
also by the fall of the CCD generally supposed in the Upper
Senonian.

Results of the biofacies study indicate that the depositional

area of the Hluk development of the Bílé Karpaty Unit was
probably deeper than the flysch trough of the Rača Unit in
the period of the maximum depth in the Turonian to Early
Senonian.

In the authors’ opinion, the transition from the Lower Cre-

taceous dark and black facies rich in total organic carbon
content to red-brown sediments of the Upper Cretaceous was
probably caused by a widely distributed paleoceanographic
event. This change was also observed in the Silesian Unit
(Menčík 1983), Pieniny Klippen Belt (Birkenmajer 1977)
and in the North Atlantic Basin (Jansa et al. 1979). In the
non-calcareous sediments of the Hluk development of the
Bílé Karpaty Unit, this event was observed within the Plec-
torecurvoides alternans Zone (upper part of the Albian–lower
part of the Cenomanian). Although the transition from the
Hluk Formation to the Kaumberg Formation is conventional-
ly placed at the Albian/Cenomanian boundary (Stráník et al.
1995), the presence of the Cenomanian in the upper part of
the Hluk Formation is possible (Bubík 1995, Fig. 1, Appen-
dix 1). In the Rača Unit, the continuation of the black flysch
sedimentation in the Early Cenomanian is proved by the
presence of the CC9 nannofossil zone.

Conclusions

— On the basis of new litho- and biostratigraphic study,

the Cretaceous was proved in the flyschoid lithofacies zones
of the Rača and Bílé Karpaty units from the Barremian to the
Maastrichtian (Fig. 5).

— The oldest Cretaceous sediments (Berriasian–Valangin-

ian) are characterized by carbonate development. Carbonate
turbidites of the Tlumačov Marl may be correlated with the
similar stratigraphic equivalents of the Silesian Unit (Tešín
Limestone).

— From the paleogeographical point of view, the Creta-

ceous of the Kurovice depositional area is considered to be a
part of the Magura Basin.

— During the Cenomanian, the dark sediments in the Rača

Unit were substituted by variegated ones, which are charac-
terized by red-brown non-calcareous claystones. This event
is thought to be of a global character.

— According to the biofacies study, the depositional area of

the Hluk development of the Bílé Karpaty Unit was probably
deeper within the Uvigerinammina jankoi Zone (Turonian–
Lower Campanian) than the flysch trough of the Rača Unit.

— The Cretaceous/Tertiary boundary lies within the lithic

flysch sediments both in the Rača and Bílé Karpaty units.

— Lower Cretaceous sediments contain nannofossils

mainly of the Tethyan bioprovince. In the Upper Cretaceous
(especially in the Campanian and Maastrichtian), common
occurrences of high- and low-latitude nannofossils  show the
influence of both Boreal and Tethyan bioprovinces on the
Magura depositional area. Tectonic slices at the front of the
Bílé Karpaty Unit extend beyond this model: the Púchov
Marl with a typical Tethyan nannofossil assemblage and, on

background image

188                                                                                       ŠVABENICKÁ et al.

the other hand, the Antonínek Formation where high-latitude
nannofossils of the Boreal bioprovince prevail.

Acknowledgement:

 The authors thank Marcelle BouDagher

-Fadel (University College London) for her preliminary eval-
uation of the Lower Cretaceous planktonic foraminifers,
Ladislava Ožvoldová (Comenius University, Bratislava) for
her preliminary results of radiolarian study, and Han Leerev-
eld (Laboratory of Palaeobotany and Palynology, Utrecht)
for his data concerning dinocysts. Our thanks go also to
anonymous reviewers for their criticism of a draft of this
paper.
The financial support of the Grant Agency of the Czech Re-
public (Grant No. 205/93/0677) is gratefully acknowledged.
This paper is a contribution to the IGCP Project No. 362
Tethyan and Boreal Cretaceous.

Appendix No. 1

List of foraminifers mentioned in the text, arranged in al-

phabetical order by generic names.

Planktonic taxa

Abathomphalus mayaroensis 

(Bolli  1951)

Blefuscuiana convexa 

(Longoria 1974)

Blefuscuiana excelsa cumulus 

(Banner, Copestake & White 1993)

Blefuscuiana infracretacea occidentalis 

(BouDagher-Fadel et al. 1995)

Globigerinelloides ultramicra 

(Subbotina 1949)

Globotruncana arca 

(Cushman 1926)

Globotruncana falsostuarti 

Sigal 1952

Gorbachikella anteroapertura 

(BouDagher-Fadel et al. 1995)

Gorbachikella kugleri 

(Bolli 1959)

Praehedbergella handousi 

(Salaj 1984)

Fig. 5.

 Stratigraphic correlation chart of the Cretaceous sediments of the Magura Group of nappes.

background image

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP OF NAPPES IN MORAVIA                  189

Benthic taxa

Caudammina crassa 

(Geroch 1966)

Caudammina gigantea 

(Geroch 1960)

Glomospirella grzybowskii 

(Jurkiewicz 1960)

Plectorecurvoides alternans 

Noth 1952

Protomarssonella? hauteriviana 

(Moullade 1961)

Pseudoreophax cisovnicensis 

Geroch 1961

Reussella szajnochae 

(Grzybowski 1896)

Rzehakina fissistomata 

(Grzybowski 1901)

Uvigerinammina jankoi 

Majzon 1943

Uvigerinammina praejankoi 

Neagu 1990

Appendix No. 2

List of calcareous nannofossils mentioned in the text, ar-

ranged in alphabetical order by generic names.

Arkhangelskiella cymbiformis 

Vekshina 1959

Arkhangelskiella specillata 

Vekshina 1959

Aspidolithus parcus constrictus 

(Hattner et al. 1980) Perch-Niel-

sen 1984
Ceratolithoides aculeus 

(Stradner 1961) Prins & Sissingh in Sis-

singh 1977
Ceratolithoides arcuatus 

Prins & Sissingh in Sissingh 1977

Conusphaera mexicana 

Trejo 1969

Corollithion kennedyi 

Crux 1981

Cruciplacolithus asymmetricus 

van Heck & Prins 1987

Cruciplacolithus intermedius 

van Heck & Prins 1987

Cruciplacolithus primus 

Perch-Nielsen 1977

Cruciplacolithus tenuis 

(Stradner 1961) Hay & Mohler in Hay et al. 1967

Eiffellithus eximius 

(Stover 1966) Perch-Nielsen 1968

Eiffellithus turriseiffelii 

(Deflandre in Deflander & Fert 1954) Rein-

hardt 1965
Lithraphidites acutus 

Verbeek & Manivit in Manivit et al. 1977

Lithraphidites bollii 

(Thierstein 1971) Thierstein 1973

Lithraphidites quadratus 

Bramlette & Martini 1964

Markalius apertus 

Perch-Nielsen 1979

Marthasterites furcatus 

(Deflandre in Deflandre & Fert 1954) Deflan-

dre 1959
Micrantholithus speetonensis 

Perch-Nielsen 1979

Microstaurus chiastius 

(Worsley 1971) Grün in Grün & Allemann 1975

Micula decussata 

Vekshina 1959

Micula murus 

(Martini 1961) Bukry 1973

Micula prinsii 

Perch-Nielsen 1979

Nannoconus globulus 

Brönnimann 1955

Neocrepidolithus fossus 

Romein 1979

Neocrepidolithus watkinsii 

Pospichal & Wise 1990

Nephrolithus frequens 

Górka 1957

Petrarhabdus copulatus 

(Deflandre 1959) Wind & Wise in Wise 1983

Prediscosphaera grandis 

Perch-Nielsen 1979

Prediscosphaera stoveri 

(Perch-Nielsen 1968) Shafik & Stradner 1971

Quadrum sissinghii 

Perch-Nielsen 1984

Quadrum trifidum 

(Stradner in Stradner & Papp 1961) Prins &

Perch-Nielsen in Manivit et al. 1977
Retacapsa angustiforata 

Black

Reinhardtites anthophorus 

(Deflandre 1959) Perch-Nielsen 1968

Reinhardtites levis 

Prins & Sissingh in Sissingh 1977

Rhagodiscus nebulosus 

Bralower in Bralower et al. 1989

Zeugrhabdotus erectus 

(Deflandre in Deflandre & Fert 1954) Rein-

hardt 1965

References

Andrusov D. & Samuel O., 1985: Stratigraphic dictionary of the

Western Carpathians, 2, L/Z. GÚDŠ, Bratislava, 1–359 (in

Slovak).

Banner F.T. & Desai D., 1988: A review and revision of the

Jurassic-Early Cretaceous Globigerina, with especial refer-
ence to the Aptian assemblage of Speeton (North Yorkshire,
England). Journal of Micropaleontology, 7, 2, 143–185.

Benešová E., Hanzlíková E. & Matějka A., 1962: Contribution to

the geology of Kurovice Klippe. Zprávy geol. Výzk. v Roce
1961

, 185–186 (in Czech).

Benešová E., Eliáš M. & Matějka A., 1968: Geology of the Kurovice

klippe. Sborgeol. Věd, Geol., 13, 7–36.

Biely A. (Ed.), Bezák V., Elečko M., Kaličák M., Konečný V.,

Lexa J., Mello J., Nemčok J., Potfaj M., Rakús M., Vass D.,
Vozár J. & Vozárová A., 1996: Geological map of  Slovakia
1:50,000. Ministerstvo Životného Prostredia Slovenskej repub-
liky 

 Geologická Služba Slovenskej Republiky, Bratislava.

Birkenmajer K., 1977: Jurassic and Cretaceous lithostratigraphic

units of the Pieniny Klippen Belt (Carpathians, Poland). Stud.
Geol. Pol.

, 45,  1–158.

Bralover T.J., Monechi S. & Thierstein H.S., 1989: Calcareous

nannofossil zonation of the Jurassic-Cretaceous boundary in-
terval and correlation with the geomagnetic polarity time-
scale. Marine Micropaleontology, 14, 153–235.

Bouma A.H.1962: Sedimentology of some flysch deposits; a graphic

approach to facies interpretation. Elsevier, Amsterdam, 1–168.

Bubík M., 1995: Cretaceous to Paleogene agglutinated Foraminifera

of the Bílé Karpaty unit (West Carpathians, Czech Republic).
In: Kaminski M.A., Geroch S. & Gasinski M.A. (Eds.): Pro-
ceedings of the Fourth International Workshop of Agglutinated
Foraminifera. Grzybowski Foundation Special Publication

,

Kraków, 3, 71–116.

Bubík M., 1996: Deep-sea biofacies of agglutined foraminifers in

the outer Flysh Belt of the Carphatians. Geol. Výzk. Mor. Slez.
v r. 1995

, 48–50 (in Czech).

Bubík M., Stráník Z., Švábenická L. & Vujta M., 1993: Find of the

Upper Albian in the Magura nappe of the Hostýnské vrchy
Hills. Zprávy geolVýzk. v Roce 1991, 20–21 (in Czech).

Buday T., 1963:  Explanations to the geological map of the ČSSR,

1 : 200,000 M-33-XXX Gottwaldov. ČSAV Praha (in Czech).

Buday T. et al., 1967: Regional geology of the ČSSR — vol. II.,  West-

ern Carpathians, part 2. Ústř. Úst. geol., Praha,  1–652 (in Czech).

Burnett J.1990: A new nannofossil zonation scheme for the Boreal

Campanian. INA Newsletter, 12, 67–70.

Caron M., 1985: Planktic Cretaceous Foraminifera. In: Bolli H.M.,

Saunders J.B. & Perch-Nielsen K. (Eds.): Plankton Stratigra-
phy. Cambridge University Press, 

Cambridge, 17–86.

Cieszkowski M., 1992: Marine Miocene deposits near Nowy Targ,

Magura Nappe, Flysch Carpathians (South Poland). Geol.
Carpathica, 

43, 6, 339–346.

Eliáš M., Martinec P., Reháková D. & Vašíček Z., 1996: Geology

and stratigraphy of the Kurovice Limestone and Tlumačov
Marl Formation at the Kurovice quarry (Upper Jurassic–
Lower Cretaceous, Outer Western Carpathians, Czech Repub-
lic).  Věstník Českého geologického ústavu, 71, 259–275 (in
Czech,  English abstract).

Geroch S., Jednorowska A., Ksiazkiewicz M. & Liszkowa J., 1967:

V. Stratigraphy based upon microfauna in the Western Polish
Carpathians. Instytut Geologiczny, Biuletyn,  211, 5, 185–282.

Geroch S. & Nowak W., 1984: Proposal of zonation for the Late

Tithonian–Eocene, based upon the arenaceous foraminifera

background image

190                                                                                       ŠVABENICKÁ et al.

from the outer Carpathians, Poland. In: Oertli H. (Ed.):
Benthos ’83; 2nd International Symposium on Benthic Fora-
minifera Pau (France), 1983. Elf Aquitaine, ESSO REP and
TOTAL CFP, Pau & Bourdeaux, 

225–239.

Glöcker E.F., 1841: Über den Jurakalk von Kurowitz in Mähren

und über den darin vorkommenden Aptychus imbricatus.
Verh. Leopold Carol. Akad. naturf., 

19, 2, 73–308.

Götzinger G., 1954: Die Flyschzone (in Erläuterungen zur geologis-

chen Karte der Umgebung von Wien 1:75.000). Geologisches
Bundesanstalt 

Wien.

Grün W., Kittler G., Lauer G., Papp A. & Schnabel W., 1972: Stu-

dien in der Unterkreide des Wienerwaldes. Jahrbuch Geolo-
gisches Bundesanstalt

, 115, 103–186.

Hanzlíková E., 1976: Biostratigraphy of the Cretaceous and Paleo-

gene flysch in the borehole Jarošov-1. Věstník Ústředního
ústavu geologického, 

51, 3, 153–162.

Hesse R., 1973: Flysch-Gault und Falknis - Tesna-Gault (Un-

terkreide): Kontinuienlicher Übergang von der distalen zur
proximalen Flyschfazies auf einer penninischen Trogebene
der Alpen. Geol. Paleont., 2. 1–90.

Jansa L.F., Enos P., Tucholke B.E., Gradstein F.M. & Sheridan

R.E., 1979: Mesozoic-Cenozoic sedimentary formations of
the North American Basin, western North Atlantic. In: Tal-
wani M., Hay W. & Ryan W.B.F. (Eds.): Deep Drilling Re-
sults in the Atlantic Ocean: Continental margins and
Paleoenvironments. American Geophysical Union, 

3, 1–57.

Liebus A., 1925: Über ein Vorkommen von Manganerz in tertiären

Flysch von Nordost. Mähren. Věstník stát. geol. ústavu Re-
publiky československé

, 1, 75–77.

Martini E., 1971: Standard Tertiary and Quaternary calcareous

nannoplankton zonation. Proc. Second Plankt. Conf. Roma
1970, 

2, 739–777.

Matějka A. & Roth Z., 1948: Report of map sheet Vsetin. Věst.

Stát. geol. Úst.

, 23, 133–136 (in Czech).

Matějka A. & Roth Z., 1956: The geology of the Magura Flysch

Group in the northern river basin of the Váh between Bytča
and Trenčín. Rozpravy Ústř. Úst. geol., 22, 1–332  (in Czech,
English summary).

Menčík E. & Pesl V., 1966: Geologie im Raume Bílá zwischen der

Schlesischen- und Magura-Decke. Geol. Práce, Spr., 38, 99–
109 (in Czech, German summary).

Menčík E. et al., 1983: Geology of the Moravskoslezské Beskydy

Mts. and the Podbeskydská pahorkatina Upland. Ústř. Úst.
geol.

, Praha, 1–307 (in Czech, English summary).

Mišík M. & Jablonský J., 1991: Paleogeographical outline of Albian

stage of West Carpathians Mts. Západ. Karpaty, Geol., 15, 7–23
(in Slovak).

Mutterlose J., 1992: Biostratigraphy and palaeobiogeography of

Early Cretaceous calcareous nannofossils. Cretaceous Re-
search, 

13, 167–189.

Neagu T., 1990: Gerochammina n.g. and related genera from the

Upper Cretaceous flysch-type benthic foraminiferal fauna,
Eastern Carpathians — Romania. In: Hemleben Ch. et al.
(Eds.):  Paleoecology, biostratigraphy, paleoceanography
and taxonomy of agglutinated foraminifera. NATO ASI C 327,
Kluwer Acad. Publishers, 

245–265.

Oszczypko N., 1992: Late Cretaceous through Paleogene evolu-

tion of Magura Basin. Geol. Carpathica, 43, 6, 333–338.

Paul C.M., 1890: Die Karpatensandsteine des Mährischungarischen

Grenzgebirges. Jahrbuch Geol. Reichst., 40, 447–513.

Perch-Nielsen K.1985: Mesozoic calcareous nannofossils. In: Bolli

H.M., Saunders J.B. & Perch-Nielsen K. (Eds.): Plankton Stratig-
raphy. Cambridge University Press

, Cambridge, 329–426.

Pesl V., 1965: Über die lithologische Entwicklung des tieferen

Paläogen in den äusseren Einheiten des Magura-Flysches.

Sbor. Geol. Vied, Západ. Karpaty

, 3, 179–212.

Pesl V., 1968: Lithofacies of Paleogene in the Magura Unit of the

Outer Carpathian Flysch on the Territory of Czechoslovakia
and Poland. Sbor. Geol. Vied, Západ. Karpaty, 9, 71–117 (in
Czech, English summary).

Pesl V. & Krystek I., 1966: Ergebnisse der Facialanalyse und sedi-

mentologischen Studien im Paläogen des Westlichen Teiles
der Magura-Flysch-Gruppe (Westkarpaten). Geologische
Rundschau

, 55, 643–665.

Pesl V., Hanzlíková E. & Peslová H., 1982: Stratigraphie tektonis-

cher Einheiten der Äusseren Karpaten in der Bohrung Jablun-
ka-1 bei Vsetín (Mähren). Věstník Ústředního Ústavu
geologického

, 57, 1, 1–15.

Pesl V. & Švábenická L., 1988: Calcareous nannoplankton of the

Upper Maastrichtian in the Soláň Formation. Zprávy geol.
Výzk. v Roce 1985

, 153–155 (in Czech).

Plička M., 1957: Geological settings of the Hluk environment (near

Uherské Hradište). Sbor. Ústř. Úst. geol., G., 23, 2, 79–148 (in
Czech).

Pospichal J.J. & Bralower T.J., 1992: Calcareous Nannofossils

across the Cretaceous/Tertiary Boundary, Site 761, Northwest
Australian Margin. Proceedings of the Ocean Drilling Pro-
gram, Scientific Results

, 122, 735–751.

Potfaj M.1993: Position and role of the Biele Karpaty Unit in the

Flysch Zone of the West Carpathians. Geol. Práce, Spr., 98,
55–78 (in Slovak, English summary).

Prey S., 1980: Helvetikum, Flysche und Klippenzonen von

Salzburg bis Wien. In: Oberhauser R. (Ed.): Der geologische
Aufbau Österreichs

Springer, Wien189–215.

Ratschbacher L., Merle O., Davy P. & Cobbold P., 1991a: Lateral

extrusion in the eastern Alps, part I: Boundary conditions and
experiments scaled for gravity. Tectonics, 10, 2, 245–256.

Ratschbacher L., Frisch W., Linzer H.G. & Merle O., 1991b: Lat-

eral extrusion in the eastern Alps, part II: structural analysis.
Tectonics, 

10, 2, 257–271.

Robaszynski F., Caron M., Gonzales J.M. & Wonders A., 1984:

Atlas of Late Cretaceous planktonic foraminifera. Rev. Mi-
cropaleont.

, 26, 3/4, 145–305.

Sikora W. & Zytko K., 1959: Geology of the Beskid Wysoki Range

South of Zywiec (Western Carpathians). Instytut Geologiczny,
Biuletyn 

141, 62–204 (in Polish with English summary).

Sissingh W., 1977: Biostratigraphy of Cretaceous nannoplankton, with

appendix by Prins B. & Sissingh W. Geol. en Mijnb., 56, 37–65.

Soták J., 1992: Evolution of the Western Carpathian suture zone —

principal geotectonic events. Geol. Carpathica, 43, 6, 355–362.

Stráník Z., Krejčí O. & Menčík E., 1989: Contribution to the geol-

ogy of Biele Karpaty Unit.  Zprávy geol. Výzk. v Roce 1986,
143–147 (in Czech).

Stráník Z., Bubík M., Krejčí O., Marschalko R., Švábenická L. &

Vujta M., 1995: New Lithostratigraphy of the Hluk Develop-
ment of the Bílé Karpaty unit. Geol. Práce, Spr., 100, 57–69.

Stráník Z., Dvořák J., Pálenský P. & Tyráček J., in print: Geological

map of the Czech Republic, sheet 25–14 Valašské Meziříčí.
Český geologický ústav, Praha.

Švábenická L.1990: Calcareous nannoplankton in flysch sedi-

ments of the Bílé Karpaty Unit (the West Carpathians). Sbor.
geol. věd, Paleont., 

31, 9–65.

Švábenická L., 1992: Biostratigraphy of the Vlára development of

the Bílé Karpaty Unit on the basis of calcareous nannofossils.
In: Minaříková D. & Lobitzer H. (Eds.): Thirty years of geo-
logical cooperations between Austria and Czechoslovakia

.

Festive Volume, Ústřední Ústav geologický, 

Praha, 177–179.

Švábenická L., 1996: From where the tectonic slices of the Creta-

ceous age could have been transported into the Magura Group
of nappes? In: Decker K. (Ed.): PANCARDI workshop 1996.

background image

STRATIGRAPHY OF CRETACEOUS SEDIMENTS OF THE MAGURA GROUP OF NAPPES IN MORAVIA                  191

Mitt. Ges. Geol. Bergbaustud. Öster.

, 41, 136.

Švábenická L. & Bubík M., 1992: The fossil record in single intervals

of the flysch sequence (Upper Senonian, West Carpathians,
Czechoslovakia). Cretaceous Research, 13, 583–590.

Tricart P., 1984: From passive margin to continental collision: a

tectonic scenario for the Western Alps. American Journal of
Science

, 284, 97–120.

Vašíček Z. & Reháková D., 1994: Biostratigrafical investigation at the

Kurovice quarry in 1993 (Outer Carpathians, Tithonian–Lower

Valanginian). Geol. Výzk. Mor. Slez. v r. 1993, 28 (in Czech).

Vujta M.Stráník Z., Bubík M. & Švábenická L., 1989: A new oc-

currence of Upper Cretaceous deposits in the Magura flysch.
Zprávy geol. Výzk. v Roce 1987

, 134–135 (in Czech).

Wind F.H., 1979: Mastrichtian-Campanian nannofloral provinces

of the Southern Atlantic and Indian Oceans. In: Talwani M. &
Hay W. (Eds.): Deep Drilling Results in the Atlantic and Indi-
an Oceans: Continental Margins and Paleoenvironment.
American Geophys. Union, 

123–137.