background image

GEOLOGICA CARPATHICA,  48, 1, BRATISLAVA,  FEBRUARY 1997

27–37

PETROLOGY OF THE MALÁ  FATRA GRANITOID ROCKS

(WESTERN CARPATHIANS, SLOVAKIA)

IGOR BROSKA, IGOR PETRÍK and PATRIK BENKO

Geological Institute, Slovak Academy of Sciences, Dúbravská 9, 842 26 Bratislava, Slovak Republic

(Manuscript received June 19, 1996; accepted in revised form December 12, 1996)

Abstract:

 The crystalline core of the Malá Fatra Mts. belongs to the basement of the Tatric Unit in the Western Car-

pathians. Two segments, the Lúka and Kriváň, are distinguished in the Malá Fatra Mts., both with large granite plu-
tons. This paper deals with the granitoid rocks of the Kriváň segment. On the basis of their mineralogy and geochem-
istry the hybrid and Magura granite types of Ivanov & Kamenický (1957) were redefined as I- and S-type granitoids,
respectively. The I-type granodiorites and tonalites have a characteristic mineral assemblage of plagioclase (An

21–48

),

Mg-biotite, epidote, interstitial K-feldspar, allanite, hornblende and zircons with I. T. parameter above 350. They are
situated mainly on the southern slopes of the Kriváň part of the Malá Fatra Mts. The Al-in-hornblende barometer gives
a pressure of 330 ± 60 MPa, the zircon and monazite saturation temperatures are between 745–810

 °

C and 750–810

°

C,

respectively. The water content  of the granitoid magma, estimated on the basis of biotite composition, was about
5 wt. % at 700

 °

C. This granite suite also contains mafic magmatic enclaves. The S-types granites are localized to the

north of the I -type granitoids. They contain plagioclase (An

12–35

), Fe-biotite, K-feldspar and zircons with  I. T.  parameter

below 300–350.  In the absence of hornblende, we suppose the same pressure (330 MPa) for the emplacement of this
granite suite. The zircon and monazite saturation temperatures are also within the same range as in the I-type gran-
ites (740–790

 °

C or 720–790

 °

C). However, the biotite of the S-type granites suggest a lower  water content of about

2–4 wt. % at 750

 °

C. It is noteworthy that according to increasing body of data, the granitoid massifs in a 200 km long

region in the present erosion cut between the Malé Karpaty and Malá Fatra Mts. were emplaced at similar tempera-
ture and pressure conditions. The pressures of 300–400 MPa indicate the similar 12–15 km emplacement depth of all
the granitoid bodies in this area.

Key words:

 Malá Fatra granites, I- and S-type granites, petrology, biotite, zircon, monazite.

Introduction

Recent studies of the Western Carpathian Variscan granitoids
have shown that they can be described well in terms of S-
and I-types (Chappell & White 1974) in most of the granitic
basement cores in Slovakia (Cambel & Vilinovič 1987;
Petrík et al. 1994; Kohút & Janák 1994; Kohút et al. 1996).
According to recent opinions the S-type granites originated
during Early Carboniferous crustal thickening and prograde
metamorphism and were probably localisated in an accre-
tionary wedge. By contrast, the I-type tonalites were formed
during the Late Carboniferous by dehydration melting of
lower crustal lithologies possibly due to the presence of hot
underplated mantle magmas (Petrík et al. 1994).

The two types of granitoids in the Western Carpathians

were described in detail only in the Tribeč Mts. (Petrík &
Broska 1994). On the basis of the chemistry of biotite, Al-in-
hornblende barometry, and Fe-Ti oxides presence, the P-T-X
conditions were established with model temperature of
700 

°

C. The resulting calculations yielded estimates of total

pressure (350 MPa), oxygen fugacity (TMQA buffer) and
water contents for I-type tonalites (5.17 wt. %), and for S-
type granodiorites (2.3 wt. %, l.c.).

The Malá Fatra Mountains consist of the Lúka and Kriváň

segments, both dominated by large granite plutons. Accord-
ing to the mapping work of Ivanov & Kamenický (1957),
Haško & Polák (1978), the Kriváň as well as Lúka parts are
formed by two intrusive granitic bodies: the older granite

body in this crystalline core is represented by hybrid biotite-
oligoclase granite

, the younger one is the so-called Magura

type granite

  (Ivanov & Kamenický, l.c.). The Kriváň part

belongs to the external zone of granitic ”cores” in the Tatric
Unit of the Western Carpathians. It should be noted that the
term ”hybrid” granites traditionally used in Carpathian litera-
ture refers to inhomogeneous granites contaminated by xeno-
liths of metamorphic rocks rather than to products of mixing
of felsic and basic melts (e.g. Pitcher 1993). The latter phe-
nomenon is actually very rare in the studied region although
some mafic enclaves have been observed. The ”hybrid” gran-
itoids presented on recent geological maps bear, as will be
shown later, the signs of the I-type. Therefore, further on, we
assign these granitoids to the I-type (Chappell & White
1974). On the other hand, the Magura granite shows more
features of the S-type granites. Though the S-type (former
Magura granite type) is usually strongly altered, some fresh
parts can be found which are suitable for microprobe analy-
ses and petrological interpretations. Similarly, in the I-type
granitoids (former hybrid granitoid suite) the critical assem-
blage (hornblende–K-feldspar) of non-altered minerals can
be found enabling us to calculate total pressure.

Basic petrographical description of the Malá Fatra granites

is given in the papers of Ivanov & Kamenický (l.c.),  Kamen-
ický et al. (1987). Several biotite and chlorite analyses were
reported by Macek (1992) and accessory minerals were de-
scribed by Hovorka (1968), Broska (1986) and Broska et al.
(1992). The principal aim of this work is to present a general

background image

28                                                                          BROSKA, PETRÍK  and  BENKO

Fig. 2.

 Schematic geological map of the Kriváň part of the Malá Fatra Mts. (Ivanov & Kamenický 1957) and location of  samples. See

text for the I/S classification.

Fig. 1.

 QAP diagram (IUGS classification). Explanation of  symbols:

mG — monzogranite, sG — syenogranite, GD — granodiorite, T — to-
nalite. Open circle — I-type granitoids, full circle — S-type granitoids.

description of the Kriváň part of the Malá Fatra granitic
rocks and to contribute to the knowledge of their petrogene-
sis by  establishing their P-T-X conditions.

Sampling and petrography

Thirteen samples were collected from both granite types

as distinguished by geological mapping. The average weight of
samples was about 2 kg, they were processed by standard pro-
cedures of crushing and sieving, Wilfy table separation, isody-
namic magnetic separation, and finally heavy liquids were used
to get heavy fractions. The granitoid rocks were named accord-
ing to the IUGS classification (QAP diagram — Fig. 1).

The I-type granites 

are represented by medium to coarse-

grained hornblende biotite tonalites (BMF-6, 14), two-mica
granodiorites (BMF-4, 9, 10) and monzogranites (BMF-8).
The rocks are usually cataclastic and strongly altered. While
biotite is completely replaced by chlorite + ore pigment, pla-
gioclase is sericitized and saussuritised. Muscovite commonly
accompanies the secondary chlorite. The rocks which escaped
the alteration (samples BMF-6, 14) contain deep red-brown/
pale yellow biotiteplagioclase with An

35–48

 in cores and

An

21–35

 in rims. Titanite, magnetite, apatite, allanite are char-

acteristic accessories. K-feldspar is always microcline, per-
thitic or chess-board, often with developed myrmekite, inter-
sticial, enclosing cumulus plagioclases. Bluish-green hornblende

was  found in samples BMF-6 and 14 in association with
quartz, plagioclase, biotite, titanite, magnetite, microcline.

background image

PETROLOGY  OF  THE  MALÁ  FATRA  GRANITOID  ROCKS                                                    29

The S-type granites

 are represented by leucocratic, medi-

um to coarse-grained granodiorites (BMF-1, 3, 5, 11, 13),
less granites (BMF-12) and tonalites (BMF-2). They are also
strongly altered. The most altered samples of the S-type are
pinkish granites with K-feldspar porphyroblasts which are
widespread mainly in the northernmost part of the body. The
alteration is similar to that in the I-type granite: chlorite and
ore pigment replace biotite. However, muscovite is more
common and epidote is rare. In relatively fresh samples
(BMF-2, 13) plagioclase is An

35–21

 in cores and An

21–12

 in

rims. A protomylonitic sample (BMF-3) has albitic plagio-
clase (An

11–4

). Biotite is red-brown/pale yellow. K-feldspar

is microcline, interstitial in granodiorites and sub- to euhe-
dral porphyritic in granites (Fig. 2).

Geochemistry

The samples were analysed for major and minor elements

by X-ray fluorescence (University of Ottawa), trace elements
by ICP-MS (Memorial University of Newfoundland). Ana-
lytical details for ICP-MS are given in Jenner et al. (1990).

Biotite and hornblende were analysed by electron micro-

probe at the Geological Survey of the Slovak Republic (JXA
633 Superprobe), monazite at Salzburg University (Jeol
845). Natural standards and 15 KV accelerating voltage were
used for the measurements.

The main and trace elements are presented in Tables 1 and 2.

The granitoids of both groups are peraluminious. The subdivi-
sion of samples into two groups based on the zircon typology
(see below) was also used for further geochemical and petrolog-
ical interpretations. Analogically to the other West-Carpathian
granitoids those with a zircon I. T. parameter above 300 were re-
garded as  I-type granitoids, and those containing  zircons
with I. T. parameter below 300 as S-type granitoids, Fig. 3
(Broska & Gregor 1992; Broska & Uher 1992). This procedure
was used because chemical criteria usually do not work effec-
tively with the altered rocks (sericitization, chloritization etc.)
common among West-Carpathian granitoids. The effect of this

criterion is highlighted by Harker type diagrams (Figs. 4, 5)
where both types form more or less well separated trends. The I-
type trace element trends usually show a higher degree of corre-
lation with silica. The S-type granites seem to be more scattered.
The SiO

2

 contents range from 64 to 72 wt. % and from 68 %  to

75 % for the I-type and  S-type granitoids, respectively.

Rare earth elements: 

Fig. 6 shows the REE standardized

patterns of both granitoid groups represented by their averag-
es and respective fields. They display negligible negative eu-
ropium anomalies in both granite groups. The I-type granite
suite has higher contents of the REE’s and due to aplitic deri-
vates somewhat steeper slope (La/Sm 3.9 for I-type and 3.6
for S-type). The concave pattern of heavy REE’s of the I-
type group suggests a possible role of hornblende, titanite
and allanite in the fractionating assemblage.

Table 1:

 Major elements in  granitoid rocks of the Kriváň part of the Malá Fatra Mts.

Fig. 3.

 Zircon typological mean points of the Kriváň part grani-

toids (Malá Fatra Mts.). Symbols as in Fig. 1.

Type

S - type

I - type

Sample BMF-1

BMF-2

BMF-3

BMF-5 BMF-11 BMF-12 BMF-13

BMF-4

BMF-6

BMF-8

BMF-9 BMF-10 BMF-14

SiO

2

68.26

68.29

74.83

69.22

70.01

73.70

69.25

69.41

64.07

72.00

68.31

69.91

67.81

TiO

2

0.34

0.49

0.16

0.41

0.30

0.18

0.34

0.29

0.84

0.34

0.52

0.29

0.57

Al

2

O

3

16.71

15.84

13.82

16.07

15.65

13.91

16.10

15.78

15.08

14.20

14.92

15.53

15.42

Fe

2

O

3

2.49

2.96

1.16

2.64

2.31

1.50

2.43

2.07

5.20

2.14

3.53

2.19

3.73

MnO

0.04

0.05

0.02

0.04

0.05

0.03

0.04

0.02

0.10

0.03

0.07

0.04

0.07

MgO

0.71

0.98

0.48

0.95

0.94

0.68

0.92

1.09

2.98

0.78

1.56

1.05

1.74

CaO

2.81

2.64

1.02

1.55

1.07

0.70

1.91

1.18

3.07

0.62

2.85

0.99

3.43

Na

2

O

5.09

4.71

3.89

4.89

4.49

3.49

4.84

3.70

3.23

3.56

3.74

4.23

3.96

K

2

O

1.89

1.89

2.95

2.06

3.09

3.77

2.17

4.28

2.43

4.62

2.30

3.80

1.94

P

2

O

5

0.06

0.16

0.08

0.15

0.13

0.09

0.13

0.19

0.35

0.13

0.21

0.17

0.22

L.O.I

1.3

1.4

0.9

1.6

1.6

1.3

1.3

1.2

2.3

1

1.4

1.1

0.8

Total

99.70

99.40

99.31

99.58

99.64

99.35

99.43

99.21

99.65

99.42

99.41

99.30

99.69

background image

30                                                                          BROSKA, PETRÍK  and  BENKO

Table 2: 

Trace elements in granitoid rocks of the Kriváň part of the Malá Fatra Mts.

Rock-forming minerals

Biotite: 

Microprobe analyses of biotite from samples

BMF-5, 9, 14 are given in Table 3. The sample KMF-17
which corresponds to our sample BMF-1 was taken from
Macek (1992). The comparison of analyses KMF-17, BMF-5
with BMF-9, 14 shows that the biotite from the S-type gran-
ite is significantly more iron-rich (Fe/(Fe + Mg) is about
0.6), more Ti rich and more peraluminous. By contrast, the I-
type granite biotite is more Mg-rich (Fe/(Fe + Mg) is 0.48)
and poorer both in Ti and alumina. All the features are con-
sistent with more oxidated nature of I-type granitoid series
and reduced nature of the S-type granite group. This closely

parallels the situation in the Tribeč Mts. where the oxidated
granitoids were interpreted as belonging to the I-type and the
reduced ones to the S-type (Petrík & Broska 1994).

Plagioclase 

from I-type tonalites is significantly more An-

rich (An

48

 in cores) than in S-type granodiorites (An

35

)

which along with the presence of hornblende and absence of
primary muscovite and generally more basic chemistry
(Figs. 4–5) point to a different source rock.

Hornblende: 

Though present in accessory amounts horn-

blende is treated as a rock-forming mineral. It was observed
only in I-type tonalites and granodiorites. It belongs to the
group of Ca-amphiboles and according IMA classification it
represents the Mg-hornblende (Leake 1967), Table 5. Horn-

Type

S - type

I - type

(ppm) BMF-1 BMF-2 BMF-3 BMF-5 BMF-11 BMF-12 BMF-13 BMF-4 BMF-6 BMF-8 BMF-9 BMF-10 BMF-14

25.0

57.0

15.0

41.0

32.0

21.0

32.0

40.0

120.0

35.0

69.0

37.0

73.0

Cr

16.0

10.0

4.0

6.0

12.0

9.0

16.0

16.0

53.0

18.0

30.0

11.0

23.0

Co

2.0

5.0

0.0

2.0

4.0

4.0

2.0

2.0

13.0

4.0

8.0

3.0

10.0

Ni

0.0

0.0

0.0

0.0

1.0

0.0

0.0

2.0

27.0

3.0

9.0

3.0

10.0

Zn

60.0

68.0

139.0

54.0

62.0

33.0

75.0

43.0

99.0

45.0

77.0

55.0

79.0

Rb

54.0

59.0

72.0

61.0

91.0

93.0

55.0

88.0

70.0

108.0

87.0

92.0

79.0

Sr

498.0

505.0

355.0

506.0

381.0

254.0

687.0

581.0

902.0

318.0

824.0

566.0

791.0

Y

10.0

12.0

9.0

11.0

10.0

19.0

10.0

13.0

25.0

7.0

16.0

17.0

12.0

Zr

154.0

116.0

90.0

182.0

124.0

75.0

154.0

81.0

220.0

171.0

165.0

90.0

159.0

Nb

7.0

9.0

5.0

7.0

7.0

7.0

7.0

7.0

15.0

7.0

13.0

9.0

9.0

La

28.5

17.9

9.0

30.2

23.1

15.8

29.0

18.2

51.7

34.7

36.1

20.7

30.6

Ce

59.1

37.6

19.3

61.4

46.8

32.3

57.7

36.0

106.3

73.9

74.2

42.7

59.7

Pr

6.8

4.4

2.1

7.0

5.4

3.8

6.7

4.2

12.5

8.0

8.5

5.0

6.7

Nd

25.9

17.4

7.9

26.3

20.2

13.8

24.9

16.2

48.8

29.6

31.9

19.8

25.4

Sm

4.8

3.9

1.6

5.0

3.5

3.2

4.2

3.5

9.2

4.3

5.3

4.0

4.3

Eu

1.0

0.9

0.5

1.1

0.8

0.8

1.0

1.0

2.1

0.9

1.2

0.9

1.1

Gd

3.2

3.1

1.2

3.3

2.5

2.9

2.8

2.8

6.2

2.2

3.9

2.8

3.1

Tb

0.4

0.4

0.2

0.4

0.3

0.5

0.3

0.4

0.8

0.2

0.5

0.4

0.4

Dy

1.7

2.2

1.0

1.9

1.6

3.0

1.6

2.2

4.4

1.0

2.6

2.6

1.9

Ho

0.3

0.4

0.2

0.3

0.3

0.6

0.3

0.4

0.7

0.2

0.5

0.5

0.3

Er

0.6

0.9

0.6

0.8

0.7

1.8

0.7

0.9

2.0

0.5

1.4

1.4

0.9

Tm

0.1

0.1

0.1

0.1

0.1

0.3

0.1

0.1

0.3

0.1

0.2

0.2

0.1

Yb

0.6

0.8

0.5

0.7

0.7

1.8

0.6

0.6

1.8

0.5

1.2

1.3

0.7

Lu

0.1

0.1

0.1

0.1

0.1

0.3

0.1

0.1

0.3

0.1

0.2

0.2

0.1

Hf

3.7

2.8

2.1

3.9

2.9

1.9

3.8

1.9

6.0

4.7

4.7

2.3

4.6

Ta

0.3

0.9

0.4

0.4

0.5

0.6

0.3

0.3

0.7

0.2

0.7

0.5

0.4

Pb

24.0

33.0

45.0

68.0

14.0

17.0

25.0

31.0

60.0

61.0

83.0

43.0

17.0

Th

8.8

5.1

3.4

7.5

7.2

5.4

7.0

5.2

14.7

24.9

16.6

7.9

11.3

U

3.0

2.0

2.0

3.0

2.0

1.0

3.0

0.0

7.0

2.0

8.0

3.0

4.0

background image

PETROLOGY  OF  THE  MALÁ  FATRA  GRANITOID  ROCKS                                                     31

Table 3: 

Representative microprobe analyses of biotite. Note: 15% and 5% of total iron was assumed as ferric for I- and S-type biotites,

respectively (based on unpublished Mössbauer data set of Western Carpathian granitoid biotites, Petrík & Lipka 1994).

blendes were observed in samples BMF-6 and 14 where they
reach less than 2 vol. %. They typically occur as prismatic
grains from 0.1 up 5 mm in size.

Accessory minerals

Accessory minerals were studied mainly from heavy frac-

tions. The assemblages magnetite, titanite, epidote and al-
lanite

 are characteristic of the I-type granite group, while

typical S-type granites contain monazite, ilmenite, and some-
times,  dusky apatite. They were observed in the eastern part
of the mountain range. The black colour of apatite was inter-
preted by Broska et al. (1992) as being due to the presence of
carbon-bearing phases (graphite, hydrocarbons, carbide) in
centres of apatite crystals.  This phenomenon is believed to

be indicative of reducing conditions in the granitoid melt.
Secondary sillimanite was observed in the S-type granite
BMF-9. Pyrite is present in all samples, I-type granodiorite
BMF-14 also contains arsenopyrite. The samples BMF-6
(I-type), 9, 10 (S-type) have rutile in their heavy fractions.
Only zircon and monazite  were studied in detail.

Zircon.

 Non-metamictic zircon is present in both granite

groups of the Malá Fatra Mts. The plot of zircon typological
mean points in the I.A vs. I.T diagram (Pupin 1980) indi-
cates:  (1) a crustal anatectic origin of these granitoids, and
(2) the presence of two groups of granitoids in the crystalline
core of the Malá Fatra Mts. The first one is dominated by L
type zircons (the S-type granite), the second one is represent-
ed  mainly by S (S

6

, S

23

)

 

subtypes

 

(I-type granitoids).

Type

S - type

I - type

I - type

Sample

KMF-17

BMF-5

BMF-9

BMF-9

BMF-9

BMF-14

BMF-14

BMF-14

BMF-14

Point

Bt 1

Bt 2

Bt 3-1 

Bt 3-2

Mean

Bt 4-1

Bt 4-2

Bt 4-3

Mean

  SiO

34.49

34.56

36.39

36.22

36.31

37.21

37.74

37.75

37.567

  TiO

2

2.74

3.35

1.92

1.87

1.9

2.39

2.29

2.29

2.323

  Al

2

O

3

18.02

18.31

16.45

16.29

16.37

15.74

15.42

15.61

15.59

  Fe

2

O

3

1.05

1.16

3.15

2.91

3.03

3.04

3.02

2.99

3.015

  FeO

17.95

19.89

16.08

14.84

15.46

15.49

15.38

15.26

15.378

  MnO

0.35

0.38

0.47

0.43

0.45

0.47

0.52

0.37

0.453

  MgO

7.63

7.84

10.31

10.57

10.44

10.8

10.71

10.96

10.823

  CaO

0

0

0

0

0

0.02

0

0

0.007

  Na

2

O

0.08

0.06

0.13

0.16

0.15

0.17

0.16

0.13

0.153

  K

2

O

9.85

9.79

10.17

10.02

10.1

9.78

9.67

9.76

9.73

Total

92.16

95.35

95.075

93.305

94.19

95.089

94.91

95.119

95.039

22 oxygens per formula unit

     Si

5.452

5.325

5.554

5.595

5.575

5.64

5.719

5.701

5.687

     Al

2.548

2.675

2.446

2.405

2.425

2.36

2.281

2.299

2.313

Sum X

8

8

8

8

8

8

8

8

8

     Al

0.809

0.65

0.513

0.561

0.537

0.452

0.473

0.479

0.468

     Ti

0.326

0.388

0.22

0.217

0.219

0.272

0.261

0.26

0.264

     Fe

3+

0.125

0.135

0.362

0.338

0.35

0.346

0.344

0.34

0.343

     Fe

2+

2.372

2.563

2.053

1.917

1.985

1.964

1.95

1.927

1.947

     Mn

0.047

0.05

0.061

0.056

0.059

0.06

0.067

0.047

0.058

     Mg

1.798

1.801

2.346

2.434

2.39

2.441

2.419

2.467

2.442

Sum Y

5.476

5.586

5.555

5.524

5.54

5.536

5.513

5.521

5.523

     Ca

0

0

0

0

0

0.003

0

0

0.001

     Na

0.025

0.018

0.038

0.048

0.043

0.05

0.047

0.038

0.045

     K

1.986

1.924

1.98

1.975

1.978

1.887

1.869

1.88

1.879

Sum Z

2.011

1.942

2.019

2.023

2.021

1.941

1.916

1.918

1.925

Total cat.

15.487

15.528

15.574

15.547

15.56

15.477

15.43

15.439

15.448

XFe

2+

0.395

0.427

0.342

0.319

0.331

0.327

0.325

0.321

0.324

Fe/(Fe+Mg)

0.581

0.600

0.507

0.481

0.494

0.486

0.487

0.479

0.484

background image

32                                                                          BROSKA, PETRÍK  and  BENKO

Fig. 5.

 Harker variation diagrams of selected trace elements.

Fig. 4.

 Harker variation diagrams of selected major elements.

Monazite.

 Orange coloured crystals of monazite are typical

of the Malá Fatra granitoids. The chemical composition of
monazite from the S-type granite (Bystrička quarry) was
studied in detail. The mole fraction of monazite (X

REEPO4

,

Mo component in Table 4) in the structure, a parameter nec-
essary for calculation of monazite saturation temperatures,
was determined. The LREE show fractionation which is evi-
dent in most of the monazite grains: the centres have a higher
amount of LREE (La, Ce, Pr) compared to the rims. The op-
posite is true for the middle REE and ytrium which are more
concetrated in the rims (Table 4). The primary origin of mon-
azite is documented by its magmatic zoning.

P-T-X conditions in the granitic melt

Pressure:

 Two samples (I-type granodiorite) have the min-

eral assemblage suitable for geobarometry (BMF-6 and
BMF-14). Both samples which, after Ivanov & Kamenický
(l.c.), come from the older (hybrid) granite group, consist of
quartz,  plagioclase, biotite, K-feldspar, hornblende and Fe-
Ti oxides which is the critical mineral assemblage in the ex-
perimental calibration of Al-in-hornblende geobarometer
(Hollister et al. 1988). In the following calculations only the
rims of the hornblendes were used to meet the equilibrium
conditions for the common crystallization of hornblende and
K-feldspar.

Hornblende analyses are given in Table 5. They were used

for the pressure calculations  after  Anderson & Smith (1995),
who calibrated the barometer for various temperatures:

p(

±

60 MP) = 4.76Al – 3.01 – [T(

o

C) – 675]/85

×

0.530A +

                      + 0.005294[T(

o

C) – 675]

The temperatures neccessary for this equation were taken

from the Zr saturation thermometry  which for both studied
samples gives approximately 770 °C (see below).  The Al-in-
hornblende barometer yielded  pressures in the range of 2.4
to 4.0 kbar (240–400 MPa). The average pressure obtained
was  3.3 kbar for both samples studied (BMF-14, n = 15,
 BMF-6, n = 8).

Temperature:

 In hydrous (2.0 % water) peraluminious and

metaluminious granitic melts the zircon solubility can be de-
scribed by the equation of Watson & Harrison (1983):

ln  D

Zr

= [–3.80 – 0.85(– 1) + 12900]/T

where  ln D

Zr

      

          is the concentration ratio of Zr in a

sample to that in stochiometric zircon,  M is the cation ratio
(Na + K + 2Ca)/(Al*Si). Zircon saturation temperatures  for
the Malá Fatra granitic rocks range between 740 and
810 

°

C (Table 6).

The solubility of monazite can also be used as a thermom-

eter. It is based on Montel’s (1993) experimental study of the
equilibrium between monazite and Ca-poor felsic melt, and
the temperature is calculated from the total LREE content of
the natural magmatic rocks:

ln REE

t

X

REEPO4

= [9.50 + 2.34+ 0.3879(H

2

O – 13318)

1/2

]/T

zircon/mellt

background image

PETROLOGY  OF  THE  MALÁ  FATRA  GRANITOID  ROCKS                                                     33

Table 4: 

Representative microprobe analyses of monazite from the Bystrička quarry (S-type granite). Note:  Mo — monazite (CePO

4

), Br —

rabantite (CaTh(PO

4

)

2

), Hu — huttonite (ThSiO

4

) mole fractions.

Sample

BMF-1

 Point

mon 1 mon1-1

mon 3-1 mon 3-2

mon 4-1 mon 4-2

mon 7-1 mon 7-2

core

rim

core

rim

core

rim

core

rim

  SiO

2

0.33

1.73

0.24

0.16

0.10

0.58

0.30

0.23

  P

2

O

5

28.12

27.00

28.08

28.01

28.36

28.64

26.99

27.15

  CaO

1.14

1.09

0.97

1.01

0.86

1.46

0.98

0.95

  Y

2

O

3

1.15

2.42

0.86

2.14

2.44

2.75

1.28

1.51

  La

2

O

3

13.86

12.81

14.23

13.56

13.33

13.02

13.64

12.93

  Ce

2

O

3

29.11

26.75

28.14

27.40

27.40

27.00

28.75

28.41

  Pr

2

O

3

3.43

3.27

3.48

3.42

3.45

3.82

3.66

3.44

  Nd

2

O

3

11.73

11.49

11.80

11.43

11.22

11.31

12.00

12.53

  Sm

2

O

3

1.75

2.18

1.77

2.05

2.33

2.27

1.49

1.87

  Eu

2

O

3

0.76

0.66

0.94

0.66

0.68

0.80

1.31

0.68

  Gd

2

O

3

0.17

0.76

0.42

0.99

0.37

0.21

0.61

0.70

  Er

2

O

3

0.02

0.31

0.20

0.15

0.21

0.36

0.19

0.04

  Yb

2

O

3

0.24

0.10

0.00

0.20

0.04

0.17

0.04

0.09

  ThO

2

4.50

5.79

4.70

4.52

4.48

4.69

5.07

4.30

  UO

2

0.18

0.96

0.93

0.77

0.92

0.97

0.22

0.35

  Al

2

O

3

0.00

0.00

0.01

0.01

0.00

0.00

0.05

0.00

  TiO

2

0.02

0.01

0.11

0.18

0.01

0.00

0.06

0.00

  MnO

0.08

0.01

0.00

0.12

0.00

0.00

0.00

0.00

  FeO

0.00

0.04

0.06

0.24

0.00

0.25

0.00

0.00

  SrO

0.02

0.09

0.00

0.01

0.00

0.08

0.00

0.04

  ZrO

2

0.05

0.11

0.11

0.06

0.00

0.00

0.12

0.00

  PbO

0.00

0.07

0.11

0.08

0.10

0.11

0.00

0.02

  F

0.12

0.23

0.34

0.41

0.27

0.32

0.60

0.24

O=FCl,C

0.05

0.10

0.14

0.17

0.11

0.13

0.25

0.10

Total

96.76

97.80

97.36

97.41

96.46

98.68

97.10

95.39

     Si

0.013

0.070

0.010

0.006

0.004

0.023

0.012

0.010

     P

0.971

0.922

0.967

0.961

0.978

0.960

0.942

0.960

     Ca

0.050

0.047

0.042

0.044

0.038

0.062

0.043

0.042

     Y

0.025

0.052

0.019

0.046

0.053

0.058

0.028

0.034

     La

0.208

0.191

0.213

0.203

0.200

0.190

0.207

0.199

     Ce

0.434

0.395

0.419

0.407

0.409

0.391

0.434

0.435

     Pr

0.051

0.048

0.052

0.050

0.051

0.055

0.055

0.052

     Nd

0.171

0.166

0.171

0.165

0.163

0.160

0.177

0.187

     Sm

0.025

0.030

0.025

0.029

0.033

0.031

0.021

0.027

     Eu

0.011

0.009

0.013

0.009

0.009

0.011

0.018

0.010

     Gd

0.002

0.010

0.006

0.013

0.005

0.003

0.008

0.010

     Er

0.000

0.004

0.003

0.002

0.003

0.005

0.002

0.001

     Yb

0.003

0.001

0.000

0.002

0.000

0.002

0.000

0.001

     Th

0.042

0.053

0.043

0.042

0.042

0.042

0.048

0.041

     U

0.002

0.009

0.008

0.007

0.008

0.009

0.002

0.003

     Al

0.000

0.000

0.001

0.001

0.000

0.000

0.003

0.000

     Ti

0.001

0.000

0.003

0.005

0.000

0.000

0.001

0.000

     Mn

0.002

0.000

0.000

0.003

0.000

0.000

0.000

0.000

     Fe

0.000

0.001

0.002

0.008

0.000

0.006

0.000

0.000

     Sr

0.001

0.002

0.000

0.000

0.000

0.001

0.000

0.001

     Zr

0.001

0.002

0.002

0.001

0.000

0.000

0.002

0.000

     Pb

0.000

0.001

0.001

0.001

0.001

0.001

0.000

0.000

     F

0.015

0.030

0.043

0.053

0.035

0.040

0.078

0.032

     Mo

0.9103

0.9012

0.9155

0.9159

0.9219

0.8977

0.9130

0.9200

     Br

0.0765

0.0299

0.0748

0.0779

0.0740

0.0798

0.0752

0.0707

     Hu

0.0131

0.0689

0.0097

0.0062

0.0040

0.0225

0.0118

0.0094

background image

34                                                                          BROSKA, PETRÍK  and  BENKO

Fig. 6.

 The REE patterns of the Kriváň part granitoids (Malá Fatra

Mts). Shaded (S-type) and open (I-type) fields are shown together
with averaged compositions (solid and dashed lines respectively).

Table 5:

 Representative microprobe analyses of hornblende. The pressures were calculated according to Anderson & Smith (1995). BMF-

14 biotite granodiorite, BMF-6 hornblende biotite granodiorite (I-type).

where  LREE

t

 = 

Σ

LREE

(ppm) (LREE = La+Ce+

+Pr+Nd+Sm+Gd) and D = (Na+K+Li+2Ca)/Al

×

 

×

1/

(Al+Si). T is in Kelvins.

The calculation of water content is described in next para-

graph,  X

REEPO4 

is the sum of the mole fractions of REE

phosphate components in monazite which, in the case of the

S-type granites of the Malá Fatra Mts. (locality Bystrička),
average 0.9 (Table 4). This value was used for all monazite
saturation temperature calculations. They range between
720 and 810

 °

C correlating quite well with the zircon satu-

ration temperatures. I-type granite samples show generally
higher temperatures than S-type granites belonging to the

Table 6:

 The summary of P-T data (Malá Fatra granitoid samples).

Sample

BMF-14

BMF-6

Point

Hbl 4-1 Hbl 4-2 Hbl 4-3 Hbl 4-5 Hbl 4-6 Hbl 4-8 Hbl 5-1 Hbl 5-3 Hbl 5-4 Hbl 5-5 Hbl 1-2 Hbl 1-3

core

rim

rim

rim

rim

rim

core

rim

rim

rim

rim

rim

SiO

2

45.93

45.79

45.93

45.71

45.99

45.96

45.72

44.92

44.72

46.57

46.02

45.85

TiO

2

0.91

0.87

0.74

0.82

0.87

0.98

0.85

0.93

0.96

0.18

0.42

0.4

Al

2

O

3

9.12

8.23

8.84

9.4

9.24

8.73

9.36

9.8

10.34

9.53

8.82

8.78

FeO

17.64

17.84

17.35

17.61

17.31

17.73

17.37

18.16

17.7

18.09

15.3

16.17

MnO

0.68

0.9

0.67

0.61

0.78

0.87

0.73

0.66

0.72

0.67

0.45

0.53

MgO

10.49

10.84

10.89

10.65

10.36

10.6

10.42

9.85

9.77

10.29

12.74

12.44

CaO

11.35

11.22

11.3

11.46

11.42

11.18

11.53

11.28

11.47

11.8

12

11.63

Na

2

O

1.22

1.37

1.09

1.11

1.14

1.13

0.97

1.24

1.21

1.01

1.29

1.34

K

2

O

1.1

0.97

1.06

1.11

1.11

1.03

1.13

1.22

1.11

0.77

0.61

0.65

Total

98.44

98.03

97.87

98.48

98.22

98.21

98.08

98.06

98

98.91

97.65

97.79

Si

6.760

6.766

6.768

6.712

6.785

6.762

6.749

6.666

6.636

6.804

6.730

6.696

Ti

0.101

0.097

0.082

0.091

0.097

0.108

0.094

0.104

0.107

0.020

0.046

0.044

Al

IV

1.240

1.234

1.232

1.288

1.215

1.238

1.251

1.334

1.364

1.196

1.270

1.304

Al

VI

0.342

0.199

0.304

0.339

0.392

0.276

0.377

0.380

0.444

0.445

0.250

0.207

Fe

3+

0.563

0.715

0.685

0.637

0.485

0.704

0.548

0.571

0.500

0.586

0.689

0.869

Fe

2+

1.615

1.501

1.464

1.535

1.656

1.489

1.603

1.690

1.702

1.632

1.193

1.122

Mn

0.085

0.113

0.084

0.076

0.097

0.108

0.091

0.083

0.090

0.083

0.056

0.066

Mg

2.302

2.388

2.392

2.331

2.279

2.325

2.293

2.179

2.161

2.241

2.777

2.708

Ca

1.790

1.776

1.784

1.803

1.805

1.762

1.824

1.794

1.824

1.847

1.880

1.820

Na

0.348

0.392

0.311

0.316

0.326

0.322

0.278

0.357

0.348

0.286

0.366

0.379

K

0.207

0.183

0.199

0.208

0.209

0.193

0.213

0.231

0.210

0.144

0.114

0.121

Pressure (MPa)

300

240

280

320

310

270

320

360

400

330

280

270

H

2

O (wt.%) zirkon T(

o

C)  monazit T(

o

C) P (60 MPa)

      S-type

BMF-1

2.5

779

779

330

BMF-2

2.5

757

746

330

BMF-3

2.5

754

721

330

BMF-5

3

741

765

330

BMF-11

3

773

785

330

BMF-12

2.5

738

769

330

BMF-13

3

789

791

330

Average

762

765

I-type

BMF-4

4.5

809

810

330

BMF-6

4.5

810

810

330

BMF-8

4.5

804

777

330

BMF-9

4.5

790

801

330

BMF-10

4.5

745

780

330

BMF-14

4.5

792

762

330

Average

792

786

background image

PETROLOGY  OF  THE  MALÁ  FATRA  GRANITOID  ROCKS                                                    35

Magura type group. Due to the possible inheritance of old
zircon cores  which increase the actual Zr contents in the
melts the zircon temperatures may be overestimated.

Water content in the melt: 

The water content was for the

first time in the West-Carpathian granites estimated for the
Tribeč I-type and S-type tonalites (Petrík & Broska 1994).
The presence of the critical assemblage for pressure calcula-
tions as well as the fresh biotite in the I-type tonalite enable
us to make similar calculations also for the Malá Fatra gran-
itoids. Because our samples of the S-type granites contained
only strongly altered biotites (chlorites) we used the biotite
analysis published by Macek (1992).

The calculation is based on Burnham’s (1979) model of

water dissolution in silicate melts (albite-H

2

O). It requires

knowledge of total pressure, temperature and oxygen fugac-
ity of the melt. The water fugacity was calculated using the
annite mole fraction in  biotite according to the equation of
biotite stability of Wones (1972). The oxygen fugacity was
approximated by the NN buffer in the case of S-type granitic
rocks (samples BMF-1, 5) and by the TMQA (Noyes et al.
1983) buffer for I-type tonalites (samples BMF-9, 14). Wa-
ter activity was then calculated according to the equation
a

H2O 

= f

H2O 

/f

H2O

o

  

(Table 7). The values of f

H2O

o

  (Burnham

et al. 1969) were taken from Tables 6–10 of Carmichael et
al. (1974). Water activity was converted to mole fraction of
water X

H2O 

according to equations 16–3 or 16–4 of Burn-

ham (1979), and to wt. % using the molecular weights of al-
bite and water.

The water content calculation is extremely sensitive to

both the oxygen fugacity and the mole fraction of annite.
The use of zircon or monazite saturation temperatures in the
calculation would yield unrealistically high water contents.
To explain this we suggest that annite content of biotite ac-
tually reflects the last re-equilibration  in the system

KFe

3

AlSi

3

O

10

(OH)

+ 1/2O

= KAlSi

3

O

8

 + Fe

3

O

4

 + H

2

O

The re-equilibration (= increasing of biotite Fe/Mg ratio)

must have continued to lower temperatures than those of zir-

con and monazite precipitation. We therefore choose the
temperatures 700

 °

C for I-type and 750

 °

C for S-type grani-

toids (Table 7). Water contents are about  4.9 wt. % for
BMF-9, 14 (I-type) and 2.3–3.8 wt. % for BMF-1, 5 (S-
type). Table 7 also shows that if the temperature 750

°

C is

used for I-type biotites, a

H2O

 exceeds 1. The value 7.82 %

then refers to the water saturation (a

H2O

= 1).

Discussion and conclusions

The results of  mineralogical, geochemical and petrologi-

cal research on the Malá Fatra granitoids confirmed the pres-
ence of  two groups of granitoids in this mountain range dis-
tinguished originally on the basis of field observations
(Kamenický & Ivanov 1957), although, some of our samples
are not consistent with the older field discrimination (sam-
ples BMF-3, 5, 10, 13). Typical hybrid granites were not ob-
served in the Kriváň part of the Malá Fatra Mts. and we,
therefore, suggest that this term should not longer be used in
the Malá Fatra mountain range. The granitoids show no sig-
nificant hybridization or mixing of mafic and felsic magmas
and are only slightly inhomogenous and locally show  fea-
tures of tectonic deformation. We have not observed any
schlieren or transitions to the metamorphic mantle in the
Kriváň segment of the Malá Fatra Mts. (this  phenomenon is
much more common in the Lúka part not dealt with in this
paper). The robust I/S type classification fits well the ”hy-
brid” and Magura types in the Malá Fatra Mts. Areally,  the
I-type granitoids  crop out  on the southern slopes of the Kriváň
part,  the S-types lie to the north of the I-type occurrences. The
map (Fig. 2) also shows some occurrences of the ”hybrid” gran-
ite on the northern crystalline slope in the end of the Bystrička
valley, but our study did not confirm them (BMF-3). On the oth-
er hand, the western occurrences of  Magura granites along the
Váh River do not show S-type characterization and the sample
BMF-10 belongs to the I-type.

The zircon I. T. typological parameter was used as a criti-

cal discrimination factor which helped us to subdivide the
samples into the above groups (Fig. 3). The granitoids of I-
type, characterized by the I. T. zircon parameter above 350,
typically contain the assemblage of allanite, hornblende, in-
terstitial K-feldspar and are represented mainly by tonalites
and granodiorites. Harker diagrams of  major and trace ele-
ments show better correlations than  for the S-type group,
this being one of the criteria for determining I-type granites
according to Chappell & White (1974). The contents of
 REEs are higher  compared to the S-type group which is
also true for the I-type granitoids in other Carpathian moun-
tain ranges. The Al-in-hornblende barometer gives the pres-
sure of 330 ± 60 MPa, the zircon saturation temperatures are
between 745 and 810 

°

C and monazite saturation tempera-

tures between 750 and 810

 °

C. The water content is about

5 wt.% at 700

 °

C. This granite suite also contains mafic mag-

matic enclaves the occurrences of which are accompanied by
increased magnetic susceptibility (above 300 

×

 10

–6

 SI

units). All these data correlate with other  I-type granitoids in
the Western Carpathians.

The  S-type granites have zircon parameters below 300–

350. Although the hornblende barometry could not be done

Table 7: 

The summary of oxygen and water fugacity data (S- and

I-type granitoids of the Malá Fatra Mts.).

  Notes:
  Calculations were performed at P

total

 = 300 MPa, X

OH

 in biotite = 1,

a

K-feldspar

 = 0.8.

1

Molar fractions and water contents calculated at the aH

2

O set to 1.

Sample Buffer Temp. Biotite log fO

2

fH

2

O a

H2O

X

H2O

water

(

C)

X

Fe

(bar) (bar)

wt%

S-type

BMF-1 FMQ

750 0.395 -15.45 453 0.208 0.253

2.27

NN

750 0.395 -15.01 749 0.343 0.325

2.32

BMF-5 FMQ

750 0.427 -15.45 572 0.263 0.284

2.66

NN

750 0.427 -15.01 946 0.434 0.365

3.80

I-type

BMF-9 TMQA 700 0.331 -14.90 1178 0.595 0.428

4.89

750 0.331 -13.55 2368 1.081

1

0.553

1

7.82

1

BMF-14 TMQA 700 0.324 -14.90 1104 0.558 0.414

4.63

750 0.324 -13.55 2220 1.014

1

0.553

1

7.82

1

background image

36                                                                          BROSKA, PETRÍK  and  BENKO

in this case we assume the same pressure (330 MPa) for the
emplacement of this granite suite. The zircon and monazite
saturation temperatures are also within the range of I-type
granitoids (740–790

°

C and 720–790 

°

C). However, their

magmas were drier, water content reaching  only about 2–4
wt. % at 750

 °

C.

It is noteworthy that in the Tribeč Mts. (Fig. 2) S- and I-

type tonalites were observed in a similar position (Petrík &
Broska 1994): the former are situated on the northern or
north-western slope of this mountain range, the latter in the
southwest. The P-T-X conditions of the Tribeč granitoids
are also almost identical with those in the Malá Fatra Mts.:
total pressure of 350 MPa for the I-type, 5.17 wt. % of H

2

O,

and 250 MPa pressure for the S-type and 2.32 wt. % H

2

O

(both at 700

 °

C model temperature). Indirect pressure esti-

mates from the surrounding metapelites of the S-type gran-
ites of the Malé Karpaty and Považský Inovec Mts. also
yielded pressures of about 300–350 MPa (Korikovsky et al.
1984). Recently, Janák & Kohút  (1996) gave a similar
pressure estimate (400 MPa) for an adjacent granite core,
the Ve ká Fatra Mts. (Fig. 2) on the basis the presence of
cordierite in its metamorphic mantle.

Thus pressures of 300–400 MPa are reported from the

200 km long belt between the Malé Karpaty and Malá
Fatra Mts. Although, this span refers to the present erosion
cut, we believe  that the presented PTX values have  a wid-
er application in the West-Carpathian granite history. The
pressure 300–400 MPa corresponds to approximately  11–
14 km emplacement depth for both  granite types in the
studied area.

However, the oxygen fugacity or water contents  were

different in I- and S-type granite melts. The first one indi-
cates oxidation conditions which are recorded by the acces-
sory mineral asemblage dominated by hornblende, allanite,
titanite, magnetite, and the low  fraction of annite compo-
nent in biotite. On the other hand, monazite, ilmenite, and
sometimes black apatite,  accessory mineral phases charac-
teristic of S-type granitoids, are indicative of  reducing con-
ditions and lower  water contents. The biotite in these gran-
ites has a significantly higher annite content. Mafic
magmatic enclaves only occur in the I-type granitoids.
They were found for example in the western part of the I-
type body (BMF-6, K ačianska Magura).

The I/S subdivision of the Malá Fatra granitoids makes it

possible to relate them to other suites of the Western Car-
pathians and the wider geotectonic framework of the
Variscan orogen during Carboniferous. In this sense the S-
type granites in the Malá Fatra Mts. may have formed as a
response to the crustal thickening and prograde metamor-
phism  during Early Carboniferous times. The S-type gran-
ite melts may have arisen due to fluid-absent melting of fly-
schoid source rocks in an accretionary prism. By contrast,
the I-type tonalites may have originated from lower crustal
lithologies by dehydration melting during a Late Carbonifer-
ous thermal event. The necessary heat may have been pro-
vided by hot underplated mafic magmas (Petrík et al. 1994).
The characteristic presence of the mafic enclaves  in the
Tribeč I-types (Sihla type s.l. Broska & Petrík 1992) sup-
ports this idea.

Acknowledgment: 

We would like to thank  Dr. P. Černý

(University of Manitoba) for allowing us to use the major and
trace element analyses perfomed in Ottawa and St. John’s,
and Dr. P. Uher for his enthusiasm when obtaining these data.
Dr. Andreas Schermayer (Salzburg University) is thanked for
microprobe analyses of monazite. This research was support-
ed by grants Ga 1082 (I. Rojkovič) and NSERC 311-1727-17
(P. Černý).

Localization of the samples

BMF-1 Biotite granodiorite. Kra ovany, Bystrička valley, a quarry.

1500 m S from the elev. p. Kyku a (919 m a. s. l.),  the second
terrace of the quarry.

BMF-2 Biotite tonalite. Locality as BMF-1.
BMF-3 Coarse-grained two-mica leucocratic granite. Kra ovany,

valley Bystrička, 3 km from the end of valley, a cliff on the
right side of the valley (660 m a. s. l.).

BMF-4 Coarse-grained leucocratic granodiorite. Kra ovany, old

quarry above affluent of the Orava River into the Váh River.
2250 m N from the elev. p. Kopa (1187 m a. s. l.) and 3500 m
southward from the elev. p. Kyku ka.

BMF-5 Coarse-grained muscovite-biotite granite, Kra ovany. Rail-

way-cut, 1 km of the creek mouth Bystrička.

BMF-6 Hornblende-biotite granodiorite. Turčianske K ačany. 1200

m S from the K ačianska Magura chalet, 2000 m S from  the
elev. p. K ačianska Magura.

BMF-7 Biotite paragneiss. Lipovec, Hoskora valley.
BMF-8 Coarse-grained two-mica granite. Lipovec, Hoskora valley, 2000 m

W from the elev. p. Lipovská Magura (1101 m a. s. l.), a cliff.

BMF-9 Coarse-grained granodiorite. Lipovec. Hoskora valley (Na

pltisku). 450 m E-S elev. p. Krivé, a cliff.

BMF-10 Coarse-grained two-mica granite. 250 m S-E  from the end

of the Hoskora valley on the right bank of the Váh River.

BMF-11 Coarse-grained two-mica granite. Šútovo, 500 m above

the Šútovo waterfall, canyon.

BMF-12 Two-mica granodiorite. Šútovo, 1200 m S form the elev. p.

Vlčkovské. 765 m a. s. l., a cliff.

BMF-13 Biotite granodiorite. Šútovo, 750 m S from the elev. p.

Vlčkovské, a cliff on the right side of the Šútovo valley, 100 m
above the chalet Vodopád.

BMF-14 Coarse-grained biotite granodiorite. Sučany, 1250 m N-E

form the elev. p. Jarolím, 788 m a. s. l., asphalt road-cut in the
forrest.

BMF-15 Two-mica granodiorite. Turany, Studenec valley, a cliff.
BMF-16 Coarse-grained biotite granite/granodiorite. Sučany,

 Studenec valley, the end of the Studenec valley.

References

Anderson J.L. & Smith D.R., 1995: The effects of temperature and f

O2

on Al-hornblende barometer. Amer. Mineralogist, 80, 549–559.

Broska I., 1986: Typhomorphic accessory minerals  of the granites

from the crystalline core of the Malá Fatra Mts. Geol. Zbor.
Geol. Carpath., 

37, 6, 693–707 (in Russian).

Broska I., Dikov Z.P., Čelková A. & Mokhov A.V., 1992: Dusky

apatite from the Variscan granitoids of the Western Car-
pathians. Geol. Carpathica, 43, 195–198.

Broska I. & Gregor T., 1992: Allanite - magnetite and monazite-il-

menite granitoid series in the Tríbeč Mts. Special volume of
IGCP project No 276

, GÚDŠ Bratislava, 23–26.

Broska I. & Uher P., 1991: Regional typology of zircon and rela-

tionship to alanite/monazite antagonism (on example of Her-
cynian granitoids of Western Carpathians). Geol. Carpathica,
42, 271–277.

background image

PETROLOGY  OF  THE  MALÁ  FATRA  GRANITOID  ROCKS                                                     37

Burnham C.W., 1979: The importance of volatile constituens. In:

Yoder H.S. (Ed.): The evolution of igneous rocks (Fiftieth An-
niversary Perspectives). Princeton University Press

. Prince-

ton,  439–482.

Burnham C.W., Holloway J.R. & Davis N.F., 1969: Thermodynam-

ic properties of water to 1000

 °

C and 10,000 bars. Geol. Soc.

Am. Spec. Pap., 

132, 1–96.

Cambel B. & Vilinovič V., 1987: Geochemistry and  petrology of

the granitoid rocks of the  Malé Karpaty Mts. Veda, Bratisla-
va, 1–247.

Chappell B.W. & White A.J.R., 1974: Two contrasting granite

types. Pacif. Geol. (Tokyo), 8, 173–174.

Droop G.T.R., 1987: A general equation for estimating Fe

3+

 con-

centrations in ferromagnesian silicates and oxides from mi-
croprobe analyses, using stoichiometric criteria. Mineral.
Mag.,

 51,  431–435.

Haško J. & Polák M., 1979: Explanations to the geological map of

the Kysucké vrchy Mts. and Kriváň segment of the Malá
Fatra  Mts. 1:50,000. GÚDŠ, Bratislava, 1–145 (in Slovak).

Hollister L.S., Grissom G.C.,  Peters E.K., Stowell H.M. & Sisson

V.B., 1987: Confirmation of the empirical correlation of Al in
hornblende with pressure of solidification of calc-alkaline
plutons. Amer. Mineralogist, 72, 231–239.

Hovorka D., 1968: Accessory minerals of the some granite types

from the Malá Magura Mts., Malá Fatra Mts. and Tríbeč Mts.
Acta geol. geogr. Univ. Comen., Geol.,

 13, 165–189 (in Slovak).

Ivanov M. & Kamenický L., 1957: Bemerkungen zur Geologie und

Petrographie des Kristallinikums des Gebirges Malá Fatra.
Geol. Práce, Zoš., 

45, 187–212 (in Slovak, German summary).

Janák M. & Kohút M., 1996: Cordierite-bearing migmatites from

the Ve ká Fatra Mts., Western Carpathians: Geothermobarom-
etry and implication for the Variscan decompressional uplift.
Geol. Carpathica, 

6, 359–365.

Jenner G.A., Longerich H.P., Jackson S.E. & Fryer B.J., 1990: ICP-

MS — A powerful tool for high-precision trace-element anal-
ysis in Earth sciences: Evidence from analysis of selected
U.S.G.S reference samples. Chem. Geol., 83, 133–148.

Kamenický L., Macek J. & Krištín J., 1987: Contribution to the

petrography and geochemistry of granitoids from Malá Fatra

Mts. Miner. slovaca, 19,  311–324 (in Slovak).

Kohút M., Carl C. & Michalko J., 1996: Granitoid rocks of the

Ve ká Fatra Mts. — Rb/Sr isotope geochronology (Western
Carphatians, Slovakia). Geol. Carpathica, 47, 2, 81–89.

Kohút M. & Janák M., 1994: Granitoids of the Tatra Mts., Western

Carpathians: Field relations and petrogenetic implications.
Geol. Carpathica, 

45, 5, 301–311.

Korikovsky S.P., Cambel B., Miklóš J. & Janák M., 1984:  The

metamorphism of the Malé Karpaty basement: stages, zoning,
and relation with granitoids Geol. Zbor. Geol. Carpath., 35,
437–462 (in Russian, English abstract).

Macek J., 1992: Biotite in granitoids, its alteration and genera-

tions. Miner. slovaca, 24, 109–114 (in Slovak).

Montel J.M., 1993: A model for monazite/melt equilibrium and

application to the generation of granitic magmas. Chem.
Geol.,

 110, 127–146.

Noyes H.J., Wones D.R., Frey F.A., 1983: A tale of two plutons:

Petrographic and mineralogic constraints on the petrogenesis
of the Red Lake and Eagle Peak  Plutons, Central Sierra Ne-
vada, California. J. Geol., 91, 325–386.

Petrík I. & Broska I., 1989: Mafic enclaves in granitoid rocks of

the Tribeč Mts., Western Carpathians. Geol. Zbor. Geol. Car-
path., 

40, 667–696.

Petrík I. & Broska I., 1994: Petrology of two types from the Tribeč

Mountains, Western Carpathians; an example of allanite (+ mag-
netite) versus monazite dichotomy. Geol. J., 2959–78.

Petrík I., Broska I. & Uher  P., 1994: Evolution of the Western

Carphatian granite magmatism: Age, source rock, geotectonic
setting and relation to the Variscan structure. Geol. Carpathi-
ca, 

45, 283–291.

Pitcher W.S., 1993: The nature and origin of granite. Blackie Acad.

&Proff.,

 1–231.

Pupin J. P., 1980: Zircon  and  granite  petrology.  Contr.  Mineral.

 Petrology,

 73, 207–220.

Watson E.B. & Harrison T.M., 1983:  Zircon  saturation  revisited:

temperature and composition effects in a variety of crustal
magma types. Earth Planet. Sci., 64, 295–30

Wones D.R., 1970: Stability of biotite: a reply. Amer. Mineralogist,

57, 316–317.